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Abstract. Big data attracts researchers and practitioners around the globe in 

their desire to effectively manage the data deluge resulting from the ongoing 
evolution of the information systems domain. Consequently, many decision 

makers attempt to harness the potentials arising with the use of those modern 

technologies in a multitude of application scenarios. As a result, big data has 
gained an important role for many businesses. However, as of today, the 

developed solutions are oftentimes perceived as completed products, without 

considering that the application in highly dynamic environments might benefit 

from a deviation of this approach. Relevant data sources as well as the questions 
that are supposed to be answered by their analysis may change rapidly and so do 

subsequently the requirements regarding the functionalities of the system. To 

our knowledge, while big data itself is a prominent topic, fields of application 
that are likely to evolve in a short period of time and the resulting consequences 

were not specifically investigated until now. Therefore, this research aims to 

overcome this paucity by clarifying the relation between dynamic business 

environments and big data analytics (BDA), sensitizing researchers and 
practitioners for future big data engineering activities. Apart from a thorough 

literature review, expert interviews are conducted that evaluate the made 

inferences regarding dynamic and stable influencing factors, the influence of 
dynamic environments on BDA applications as well as possible 

countermeasures. The ascertained insights are condensed into a proposal for 

decision making, facilitating the alignment of BDA and business needs in 
dynamic business environments. 

Keywords: Business IT Alignment, Dynamic Business Environments, Data 

Analytics, Big Data, Systems Engineering. 
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1 Introduction 

While data have, at least to some extent, always played a role in the business world, the ability to 

gather and utilize them has dramatically increased over the course of the last two decades [1]. As 

an answer on modern technological demands, the term big data has emerged, starting its journey 

in early 2000´s with the introduction of the “Google File System” [2]. Since then a confluence of 

promising technologies, techniques, paradigms and algorithms occurred, influencing a vast array 

of domains in multiple ways. A non-exhaustive list of application areas that especially influences 

the way companies operate, comprises such areas as industry 4.0 and IoT [3], transportation [4], 

supply chain management [5], the evaluation of mergers and acquisitions [6] as well as the 

analysis of information provided by news outlets and social media [7]. 

While there are significant differences in the encompassed tasks, in each case the 

incorporation of relevant information into the respective processes was expected to yield 

noticeable benefits. Apart from the overall increase of revenue by providing new or enhanced 

services, this includes many more avenues, as, for instance, improvements of organizational 

activities, such as monitoring, optimizations or decision making [3], resulting in noticeable 

competitive advantages. This esperance is supported by many researchers [8]–[12], including 

Müller et al. [13], who conducted a corresponding study to quantify this effect. In the course of 

their work, they found that the use of big data is associated with an average productivity increase 

of approximately four percent. Subsequently, there is a huge number of publications dealing with 

the topic of big data [14].  

1.1 Big Data Analytics 

As highlighted, big data analytics (BDA) is used for multiple reasons in numerous application 

areas, aiming to process large amounts of differently structured data, sometimes even in real-

time [15]. A few years ago, only the volume of the data was relevant, and conventional data 

warehouses appeared to be sufficient for the storing and analysis of the internal company data 

[16]. Yet, in the following years, different other data characteristics emerged, forcing researchers 

as well as practitioners to alter and create new paradigms, analysis methods and technologies, 

capable to overcome limitations of currently existing approaches. Apart from the previously 

referred amount of data (volume), this includes, for instance, the variety, velocity and veracity of 

the data [15]. Likewise, to the definition of the term big data itself, most of the characteristics 

encompass different meanings. The variety of the data mostly refers to the heterogeneity of the 

structure [17], [18], but sometimes also its origin [15]. The same applies to the velocity that 

pertains to the speed with which the data is incoming as well as the time for its processing [15], 

[18]. Furthermore, the veracity focuses on the reliability and trustworthiness of the data. A 

general overview, comprising some of the most relevant expressions is depicted in Figure 1. 

However, those core characteristics, also labelled the four Vs of big data, represent only an 

excerpt of the general amount of existing data characteristics [19]. Others focus, for instance, on 

the value of the data or the variability of the other characteristics, such as the structure, data 

source and flow rate [15], [17]. Generally, big data can be characterized as “data sets and 

analytical techniques in applications that are so large […] and complex […] that they require 

advanced and unique data storage, management, analysis, and visualization technologies” [20]. 

As one can note, the consideration of only a single characteristic and its severity cannot be 

seen in an isolated way or treated equally across different systems, since it is always an 

interaction of multiple facets. Consequently, sometimes additional methods for data cleansing, 

preparation and transformation might be required, for instance, if new data from previously 

unknown or unreviewed sources is considered. The diversity of the characteristics, both from the 

separate consideration as well as their combination, leads not only to a certain uniqueness of a 

big data application but also to an increased complexity. This circumstance can easily be 

illustrated by the comparison of two different cases that take only two different characteristics 
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into account. The system architectures of a potential big data solution for the batch processing of 

petabytes of data can be entirely different compared to a solution that is intended to stream 

process gigabytes of data, maybe also originating from different sources. Therefore, it does not 

seem to be surprising that in most of the cases, neither the planning and implementation of 

related projects nor the system’s operation is a trivial undertaking. This is exacerbated by the 

socio-technical nature of big data applications, combining the capabilities of the involved people, 

the injected data and the technical implementation [21]. The latter, whose realization can be 

summarized under the term big data engineering [22], represents one of the most important 

dimensions. It includes, inter alia, the planning and structuring of the system under development, 

as well as the capabilities that are to be provided. Those could, for instance, comprise such 

capabilities as sentiment analysis [23], prediction engines [24], machine learning [25], text 

analytics [26], complex calculations [27] or numerous other operations whose findings are 

deemed beneficial to facilitate a business’s success. 

 

 

Figure 1. The four main data characteristics of big data 

As in the general nature of information systems, the system itself does not create any value 

[28] but rather the use of it. The same applies for big data systems. The actual value creation is 

realized through the incorporation of knowledge that can be achieved by the analysis of the data 

through the developed solutions. However, a deficiency regarding the technical implementation 

may have unforeseen consequences and therefore a huge impact for the general applicability of 

the solution. Besides faulty implementations, those deficiencies might also occur through the 

deprecation of the application, which is especially likely when it is subject to a highly dynamic 

business environment [29]. 

1.2 Dynamic Business Environments 

Not only systems and their implementations experience an ongoing evolution, the same applies 

for numerous businesses [30] and the environments they are operating in. This can be linked to a 

variety of factors from natural causes and new scientific or technological advancements to 

changes regarding the market conditions, customers’ preferences, fluctuating competition and 

new legal frameworks. As a result, there are numerous strategies for dealing with this situation. 

Accordingly, there is also a vast body of scientific literature dealing with this phenomenon [29], 

[31]–[35]. While this situation constitutes a significant challenge to organizations, it also allows 

for the differentiation from the competition through superior adaptability, as well as for the 

development of new business segments. Concluding those considerations, it can be stated that in 

the context of business, “dynamic environments are characterized by constant rate of change and 

flux that open up opportunities and market niches” [36]. 
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In a global economy that grows more and more connected and therefore opens up businesses 

to an increasing number of influences, those dynamic environments require a certain adaptability 

not only from relevant stakeholders but also from the systems that are used for operational 

activities. This, however, puts emphasis on the importance of the continuous readjustment of the 

alignment between business and IT, which “refers to applying Information Technology (IT) in an 

appropriate and timely way, in harmony with business strategies, goals and needs” [37]. 

Furthermore, this not only applies to traditional and often rather generic IT infrastructure, but 

also to highly sophisticated and specialized systems such as BDA solutions. 

1.3 Research Goal 

Despite the aforementioned vast body of literature, to our knowledge, the implications of highly 

dynamic business environments on the implementation and operation in the domain of BDA 

have not yet been covered sufficiently. To overcome this paucity and facilitate the 

abovementioned alignment, this article will discuss their relationship and highlight potential 

consequences and responses. Hence, the main goal of this research is not only to provide an 

overall overview about influences of dynamic business environments, particularly focusing on 

big data analytics applications, but also on general mistakes during the corresponding 

implementation and possible countermeasures that could be performed. Thus, the main research 

question (RQ) is the following. 

 

RQ: What are the effects of dynamic business environments on big data analytics solutions 

and how can businesses take them into account? 

 

To find a suitable answer to this RQ, it is at first required to understand which factors signify a 

dynamic business environment and how those environments differ from stable ones, resulting in 

the first sub research question (SRQ). 

 

SRQ1: What are stable and dynamic business environments with regard to big data analytics? 

 

Afterwards, the influence of those dynamic business environments on big data solutions needs to 

be thoroughly investigated, constituting the focus of the second SRQ.  

 

SRQ2: How does a dynamic business environment affect big data analytics solutions? 

 

Finally, the third and last SRQ focuses potential strategies to deal with those identified effects. 

 

SRQ3: Which strategies and countermeasures could be applied to mitigate the difficulties 

when it comes to the implementation of big data analytics solution in dynamic business 

environments? 

1.4 Structure 

To find answers to the research questions, the contribution at hand is structured as follows. 

Ensuing the Introduction, which also comprises explanations for the key concepts big data and 

dynamic business environments, Section 2 provides details about the methodologies used in the 

context of this work. In particular a structured literature review as well as expert interviews were 

carried out, not only to obtain an overview about the current state of the art but also to stepwise 

validate and discuss the results originating from this work and to gain additional insights. 

Following this foundational information, in Section 3, a thorough analysis of dynamic business 

environments in the big data context is conducted. Throughout this section, the respective results 

of the interviews as well as the literature review are applied. At first, the dynamic of businesses 



62 

 

in the big data context is delimited, providing an answer to SRQ1. This is followed by the 

examination of the consequences of rapidly evolving business environments, which corresponds 

to SRQ2. In Section 4 SRQ3 is answered, in particular, possible strategies and countermeasures 

to mitigate the challenges accompanying BDA in dynamic business environments are presented. 

The work eventually closes with a short recapitulation and some concluding remarks in 

Section 5.  

2 Methodology 

The methodology of this research is based on three major factors. The first one is the use of 

reasoning to deduce and justify certain aspects. Furthermore, a structured literature review 

provides a comprehensive overview of the state of the art. As a third source of insights, experts 

interviews have been conducted, providing additional knowledge and also helping to evaluate the 

findings. 

2.1 Structured Literature Review 

To evaluate how companies already handle the dynamic nature of certain big data sources and 

processing systems, and what consequences may result from this, a structured literature review 

(SLR), which “distills the existing literature [...] to summarize the state of the art in this subject 

field” [38], is conducted. The SLR proves to be particularly useful in this research, because it 

combines the two areas of big data and dynamic business environments, which have already 

been considered separately by researchers, but less in connection, as the results in Section 3 

show. In doing so, a theoretical background is provided and the breadth of the already existing 

research can be shown and practical questions answered [39]. According to [38], the review 

follows five consecutive steps, beginning with the scanning of all available publications for 

strictly specified key phrases in a well-defined time period. During this first step, relevant 

information is extracted in the form of notes, including secondary topics revolving around the 

main topic [38]. Although it is done simultaneously to the scanning process, according to the 

authors of these guidelines, taking notes is to be considered as a second step. Subsequently, 

originating from these notes, a concept map is drawn as a third step. Because the objective of this 

review is only a summary of the state of the art and not a stand-alone systematic literature 

review, the concept map only consists of three nodes, as depicted in Figure 2. Starting from the 

main topic, referred to as big data in dynamic business environments with the concept map ID 

(CM-ID) number 1, two secondary topics could be identified, which were frequently included in 

the primary literature by the authors. These derived subject areas are big data analysis 

challenges and big data mining with dynamic sources. Because of their presumably lower 

relevance to the main topic, only the first twenty available research articles found, using the 

corresponding database queries (automatically ordered by relevancy), are considered in the SLR. 

The writing of the literature review itself takes place as the fourth step and finally, as the fifth 

step, the bibliography is added at the end of this document. 

 

 

Figure 2. Concept map of the conducted SLR 
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The strict specification of the conducted search is necessary in order to meet the scientific 

standards that a literature review must fulfil [40]. In particular this includes that it is systematic, 

explicit and comprehensive, so that other researchers are able to decide whether the review 

sufficiently covers their own field of interest [39]. As depicted in Table 1, the scientific 

databases Scopus and Springer Link were selected for the search. Although Scopus only 

provides abstracts and bibliographic data, the results combine references to literature found in a 

variety of full text databases such as IEEE Xplore, ACM Digital Library and ScienceDirect. 

However, since previous test searches have shown a lack of references to publications provided 

by Springer, this specific database is additionally used for the search. In Scopus, the search 

parameters focus on the title, keywords and abstracts of the available publications, ranging from 

2014 to 2020. Depending on the entry of the concept map they differ partly in terms of the used 

keywords. However all of them had the keyword big data in common. For CM-ID 1, the focus 

was put on the keywords dynamic business or dynamic environment. The second entry covered 

analytics challenges whereas the third entry used a combination out of data mining and dynamic. 

Springer, in turn, required some changes in the query due to its slightly different advanced 

search. The term big data had to be entered in the title search field, and two separate searches 

had to be performed for the first concept map entry, one with the term dynamic business and one 

with dynamic environment in the search field for an exact phrase somewhere in the document. 

For the other two concept map entries, the search was carried out analogously. Besides the 

shown input parameters, further criteria for evaluating the significance of the found publications 

are established, which are listed in Table 1. In particular those comprise the inclusion and 

exclusion criteria of the search and refinement process. It was strictly required that all inclusion 

criteria were fulfilled, contrary to that, whenever one of the exclusion criteria was applicable the 

paper was not further considered.  

Table 1. Inclusion and exclusion criteria 

Inclusion Criteria Exclusion Criteria 

Only completed research Early-access papers 

Conference or journal paper, or (for CM-ID 1 only) review Outside the first 20 entries (for CM-ID 2 and 3) 

Written in English Specific study without theoretical contributions 

Satisfying theoretical background Duplicates 

Field of application similar to business environment Dynamic in terms of hardware specifications 

The criteria demanding only completed research papers from conferences, journals or reviews, 

as well as the special criterion for CM-ID 2 and 3, were applied before the total hits were 

counted. Figure 3 therefore already shows the filtered number of hits according to these criteria. 

The characteristics, challenges and consequences of big data analytics in dynamic business 

environments, derived from the ten articles meeting these criteria, are discussed in Section 3. 

There, the results are divided into two categories: predictable and unforeseeable consequences. 

Findings from publications complying with the search parameters of the secondary nodes, 

indicated in Figure 3 with the CM-IDs 2 and 3, are also taken into account with explanations, 

how the requirements for successful data acquisition and analysis would change in a dynamic 

environment. 

2.2 Expert Interviews 

Before the actual questioning started, initial warm-up questions were asked, focusing not only on 

the current position but also the overall work experience and the self-perceived experience in the 

related subdomains. In terms of the latter, a range from 1 to 10 was provided, at which 1 induced 

a very low level of knowledge and 10 a very high level. However, it has to be taken into account, 

that those self-evaluations are highly subjective and not necessarily completely reflective of the 

actual degree of competence. Additionally, one has to note that the given time of work 
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experience includes only the time after the studies, even though some of the interviewees already 

collected initial experience before or concurrently to being university students. An overview 

about the background information of each interviewee is summarized in Table 2. On average, 

each expert interview had a duration of about 40 minutes.  

 

 

Figure 3. Literature review search workflow 

All questions asked during the interview were focused on the aforementioned SRQs and are 

shown in Table 3. The initial four questions were concentrating on the made inferences of SRQ1. 

Besides the assessment of the overall sensibility, the interviewees were asked to perform tangible 

ratings on each of the factors depicted in Table 4. In here a range from 1 to 10 was utilized, 

following the recommendation by [41]. All other questions related to the SRQs in a similar way. 

The questions five and six were focusing on SRQ2 and the remaining – on SRQ3. Except of the 

closed-ended question nine and the numerical rating in question four, all others were formulated 

as open-ended questions. Furthermore, sometimes the interviewees somewhat digressed from the 

given questions; that, however, turned out to be a valuable source of additional insights. 
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Table 2. Information about the interviewed experts. The given self-perceived experience ranges from low 

(1) to high (10). 

No. Position Work Experience 

Self-perceived 

Experience 

Business IT Big 

Data 

1 Big data architect in a large European insurance company 6 years 9 7 7 

2 
Previous managing director of an IT system company 

(ERP/BI/etc.) 

40 years 9 8 5 

3 Project manager at a large IT service company 8 years 7 10 6 

4 
Lead product manager at a large accounting service 

provider 

10 years 4 8 4 

Table 3. All asked questions and their respective answer type 

No. Question Type 

1 
How do you gauge the concept, to rate a business environment whether it is rather static 

or dynamic? 
Open-Ended 

2 
Do you think that the following factors (cf. each entry in Table 4) are sensible to 

distinguish between static and dynamic business environments? 
Open-Ended 

3 
Do you miss any factors that were not mentioned in the aforementioned question (cf. 

Table 4)? If so, please name and describe why you consider them to be important. 
Open-Ended 

4 

How would you rate the importance of each factor (cf. Table 4) on the behavior of the 

business environment whether it is rather static or dynamic? In doing so, for each factor a 

value ranging from 1 to 10 can be given, where 1 indicates a very low influence and, vice 

versa, 10 a very high influence. 

Numerical 

Rating 

5 
How do you think, dynamic business environments affect the use of BDA in a business 

context. Do specific requirements or risks arise? 
Open-Ended 

6 

Please carefully examine the depicted state machine diagram (cf. Figure 6), which 

describes the lifecycle of a big data analytics application. Do you think that it is sensible 

to implement such a structured process? Do you agree with the shown process? Please 

give reasons for your decision. 

Open-Ended 

7 

Please carefully examine the activity diagram (cf. Figure 7), which describes the decision 

making process after a relevant change within the business environment occurs. Do you 

think that it is sensible to implement such a structured process? Do you agree with the 

steps to be conducted? If not, please describe in which way changes should be made on 

the intended workflow. 

Open-Ended 

8 
What are typical mistakes, which should be prevented, when it comes to the adequate 

reaction on changes during the decision making process in business environments? 
Open-Ended 

9 

Which of these aspects seems to be more relevant for the overall business success? A) 

Evaluation of the available options for action. OR B) Modifiability of the existing 

solution. 

Closed-Ended 

10 

What measures do you consider appropriate when it comes to the implementation of a big 

data analytics application in a dynamic business environment, to ensure that it can be 

adapted as flexibly as possible to changing conditions 

Open-Ended 

While most of the results are interwoven within the following course of this work, explicit 

results are primarily addressed in Sections 3 and 4. The main reason for this emerges out of the 

main focus of the interviews itself, where findings from the contribution at hand are discussed. 

  



66 

 

3 Dynamic Business Environments in the Big Data Context  

In order to clarify the relation of dynamic business environments and BDA and to find suitable 

answers to the previously defined RQ and SRQs, within this section, the relation between 

dynamic business environments and big data is thoroughly investigated. In doing so, the results 

of the earlier introduced methodologies are presented and interwoven in the overall research 

discourse. At first, the aspects that determine the dynamicity of a business environment in the 

context of BDA are explored. Subsequently, predictable and unpredictable consequences of 

dynamic businesses environments are discussed, followed by a consideration of their 

implications for BDA.  

3.1 Delimiting the Dynamic of Businesses 

Even though most companies can benefit from an advanced use of information resources, the 

particular business premises and needs can vastly differ, also resulting in diverse avenues for 

enrichment through big data. For instance, the monitoring of the production machines in a 

factory is relatively stable. There is a set of well-understood and familiar machinery, which 

produces sensor data whose structure is constant over time and usually only changes when a new 

type of device is introduced. While this can certainly fall into the category of big data if the 

assemblage gets complex enough or there are high requirements regarding the velocity [42], a 

once implemented application can be used for a long time without noticeable degradation or 

aging.  

In contrast, a dynamic situation exists when the underlying factors permanently evolve. As a 

result, a system is either never truly finished or it gets more and more outdated with every 

change to the business reality. This situation was also emphasized in the course of the expert 

interviews. A typical area where this occurs is the analysis of social media posts and news. For 

instance, the author of [43] described how the analysis of news articles can help companies in 

identifying potential threats to their supply chain and act accordingly before possible competitors 

are even aware, therefore giving them the edge by increasing their reaction speed. However, the 

relevant set of data sources is in a constant state of flux and the same applies to social media. 

New competitors arise, some might go out of business and others could change their content, 

quality or just the technical implementation, resulting in a need to overhaul the way the 

corresponding data are garnered by the analytics system. Furthermore, other markets might 

become of interest, requiring the addition of new sources or even the incorporation of new 

languages. Additionally, also the usage of already implemented languages might change over 

time, resulting in the emergence of new abbreviations, slang or proper names. Moreover, 

language can be context-sensitive, posing another challenge, especially, when the context cannot 

be explicitly conveyed but has to be initially aware to the recipient [44]. An example would be 

the limited amount of characters when using twitter, or even more severe, the use of hashtags 

[45]. While in 2018 the hashtag #corona would have almost certainly referred to a brand of beer, 

in the second quarter of 2020 it is highly likely that the corresponding pandemic is meant. Even 

in cases where the input data are not noticeably changing, especially when they are unstructured, 

the analysis does often not provide a perfect accuracy [44]. Subsequently, a later modification or 

replacement might be necessary or at least desirable. 

Besides those factors regarding the data and their processing, also the relevant business 

questions itself can change, requiring either a modification of the BDA system or remaining 

unanswered. While some businesses might only need the same information and analyses over a 

long period of time, resulting in a system that needs no major changes regarding that aspect, 

others can be reliant on frequently changing insights. As a result, the latter ones also need to 

constantly extend or adapt their analytics capabilities. Furthermore, also the long-term 

predictability of the organization’s and its line of work’s development as well as the surrounding 

circumstances can have an influence on a BDA solution. While in some cases, new requirements, 
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constraints or opportunities can be planned for well in advance, others are rather unpredictable. 

This applies, for instance, to the social media domain, where not only the meaning of the data 

can change frequently, but also certain events can highly influence the data generation itself [46], 

[47]. Additionally, during the interviews, the organizational structure emerged as another 

important factor, with highly hierarchical and complex ones usually resulting in slower reaction 

speeds and more complicated processes compared to businesses with flat structures. A summary 

of those six identified major factors, respectively dimensions, contributing to an either stable or 

dynamic business environment is shown in Table 4. 

Table 4. Factors influencing the character of a big data analytics solution 

Stable Dynamic 

Business questions remain the same Frequently new business questions 

No major changes regarding the data sources Frequent changes regarding the data sources 

Meaning of obtained data does not change Data are context-dependent 

Algorithms have high maturity Algorithms are rapidly improving 

Developments are highly predictable Little long-term planning security 

Highly hierarchical organizational structures Flat organizational structures 

Oftentimes, when the implementation of big data analytics is discussed in the literature, it 

follows a rather conclusive approach without much focus on the potential for further 

development [43], [48], [49], which was also observed in the course of the literature review. The 

necessary tools and technologies are chosen, combined and as a result, a finished analytical 

system emerges. Ideally, along the way or at least at the end, there also occurs some testing, 

showing that the solution does what it is supposed to do. Subsequently, the system is used and 

hopefully generates valuable insights. During the conducted interviews, it was also stated by 

expert 1 that this habit is not uncommon amongst companies. 

While it sounds like an expedient approach and also is in many situations, it also disregards 

the demands that arise for other businesses. As long as only the sensors of a factory are being 

monitored, a system can remain the same and deliver the desired information for a long time. 

However, when it is applied in a dynamic situation, its degradation starts immediately and the 

obtained results and therefore also the corresponding benefits are being negatively affected [50]. 

Furthermore, as pointed out by expert 1, depending on the organizations line of work, external 

factors like statutory rules can result in huge fines if they are not taken care of in time. The same 

reduction of value occurs when the company itself evolves, leading to new questions that need to 

be answered in order to enhance the business [51]. This also requires to make changes to the 

existing system or the implementation of a new one. 

Using the aforementioned dimensions, the degree of stability, respectively dynamism that 

applies to an organization can be determined via a survey as depicted in Figure 4. Since 7-point, 

9-point and 10-point scales generally yield the best results [41] and the determination of the 

positioning regarding the assessed factors being rather imprecise, using a linear scale on the 

lower end of that spectrum appears to be the most promising approach to achieve the highest 

degree of certainty. 

To easily determine the position of an examined organization on the spectrum between stable 

and dynamic, it appears to be sensible to provide an index that condenses the evaluations 

regarding the six identified dimensions to a single value. This would result in a Likert scale [52], 

comprising the values from 6 to 42. However, since it was to assume that the dimensions are not 

all equally impactful for this evaluation, it was deemed reasonable to accommodate this factor. 

For this purpose, the interviewed experts have each been asked to rate the importance of those 

factors regarding the overall evaluation, again using a linear scale, this time ranging from 1 

(lowest) to 10 (highest), allowing for more differentiation between the answers. Thereupon, the 

responses have been combined and the respective dimension’s influences determined by adding 

all the assigned values across the dimension and dividing it by the sum of all the assigned values 
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across all dimensions. The results, signifying the relative importance of the aspects, are depicted 

in Figure 5. 

 

 

Figure 4. Survey to determine the degree of stability and dynamism 

 

 

Figure 5. Impact of the identified dimensions on the dynamism index 

Those weightings can subsequently be used in conjunction with the organization’s evaluation 

regarding those dimensions to calculate the one-dimensional index. For this purpose, the values 

stemming from the evaluation are multiplied with their corresponding impact, and then summed 

up, leading to a value between 1 and 7 that takes the dimensions varying impact into account, 

allowing for a more precise assessment. 

Business Questions 
24% 

Stability of Sources 
12% 

Meaning of Data 
13% 

Maturity of  
Algorithms 
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Predictability of 
Developments 
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Structure 
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3.2 Consequences of Rapidly Evolving Business Environments 

This subsection at first deals with the main results of the previously described structured 

literature review, which shows that the four Vs of big data (cf. Figure 1) can be divided into two 

categories, namely predictable and unforeseeable ones. Due to their distinct influences on 

dynamic business environments, those will be further investigated and described in the given 

context. In Subsubsection 3.2.1, predictable consequences of dynamic business environments, in 

terms of volume and velocity, are discussed. Afterwards, in Subsubsection 3.2.2, the same is 

done for unforeseeable consequences of dynamic business environments, which might be caused 

by changes in variety and veracity. Subsequently, using those findings and the conducted expert 

interviews, the effects of dynamic business environments on big data analytics solutions are 

discussed in Subsubsection 3.2.3. 

3.2.1 Predictable Consequences of Dynamic Business Environments in the Literature 

With the success and further emerging of big data analytics [53], businesses strive to accumulate 

more and more data in order to generate more and more knowledge about their customers 

preferences [54], [55] and how better marketing strategies can be developed. Thus, the volume of 

big data will predictably increase and more powerful solutions will be needed. The performance 

of the processing systems becomes an even bigger issues if the data is time-sensitive or if the 

success of whatever the data is used for depends on an immediate analysis. These data streams, 

which vary in volume and velocity and require a continuous processing, are, for instance, of 

importance in stock markets [56] and the tactical domain [57]. Especially in these fields of 

application, the focus is less on solely descriptive or predictive analyses, but rather the 

acquisition of prescriptive knowledge [58]. This means an answer to the question “What should I 

do?” is more important than an answer to “What happened before and what could possibly 

happen next?”. While companies and other users of big data analytics are aware of these 

upcoming issues, the search for solutions which cover their specific needs intensifies. Multiple 

approaches, including cloud, fog and edge computing [55], [59], gain interest in this regard. 

However, the processing capacities of the systems are not the only factor to consider when it 

comes to time-sensitive data. In a dynamic environment with distributed data sources, inter alia, 

the network capability might become the decisive bottleneck if a centralized approach is adopted 

[55]. To prevent the system from losing its value for the company due to bandwidth fluctuations 

[56], fog computing, in contrast to cloud computing, distributes the processing of big data at the 

edges of the network. 

Darwish and Abu Bakar [55] conducted a case study that investigates, how the dynamic 

environment of Intelligent Transport Systems (ITS) benefits from research in the big data area. 

Especially since the participants of the ITS domain can be compared to devices in the Internet of 

Things, the research area of the study shows certain parallels to a business environment. The 

authors found that only fog computing provides the necessary performance, because in traffic, it 

is not assured that a stable network connection can be provided at any time. Moreover, since 

every vehicle in an ITS can produce new data primarily when it is actively used, the actual 

number of data sources is highly variable. To address the issue of scalability, processing 

capacities would increase dynamically if the sources themselves would preprocess their own 

accumulated data. In this context, fog or edge computing might seem to be more suitable 

solutions than cloud computing. For the fact that only the volume and velocity of data is 

considered in this explicit case, the more complex future challenges of unforeseeable dynamics 

in variety and veracity need to be examined separately in the Subsubsection 3.2.2. 

Two consequences for big data analytics applying companies arise from the previous 

observations on dynamic environments. First, to be able to provide a reasonably priced as well as 

highly performant solution, businesses need to take advantage of the possibilities of the Internet 

of Things domain [58] by including the data generating devices into the processing. Thus, 

dynamics in volume and velocity can be immediately handled by proportionally increasing 

processing capabilities. Secondly, the complexity of the data needs to be reduced in order to 
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decrease the workload and used bandwidth. Lin et al. [53] argue that machine learning 

approaches in particular can provide valuable solutions for abstraction and dimension reduction. 

As a pre-processing task, important features of the data can be identified and with this 

simplification the efficiency and accuracy of dynamic analysis of large data sets can be 

increased. The use of artificial intelligence is further described in the Subsubsection 3.2.1. 

3.2.2 Unforeseeable Consequences of Dynamic Business Environments in the Literature 

Variety and veracity, in turn, are the dimensions of big data in dynamic environments which are 

less predictable than the increase in volume and velocity. While some researchers argue, that the 

acquired data is always structured in some way [55], others are more reserved in making such an 

assertion [59]. Because of the growing interest in numerous domains from which large amounts 

of data might be received, beginning with data on the production process up to recommendations 

based on user experience [60], researchers and practitioners are confronted with the need to 

handle upcoming new data structures as soon as they emerge. While it can be assumed that with 

increasing volume new data structures occur more frequently, the structures themselves might be 

unpredictable. Also, the veracity of the data can suffer from the fact that new data structures 

without sufficient test runs have unknown potential for interference due to their dynamic 

appearance. Another major difficulty are redundancies. Multiple data sources do not guaranty 

that every piece of data is unique, which means that the quality of a subsequent analysis is lower 

than expected [61]. 

One way to address this problem according to researchers is the enactment of artificial 

intelligence [53], [58], [62]. Generally, the objective is to develop a software solution which, 

after an initial training phase, is capable of self-configuration and fine tuning without human 

intervention [53]. This approach offers benefits in various stages of big data analytics. For 

instance, in the preprocessing phase, the abstraction and thus simplification, as well as the 

extraction of features and the removal of noise [62] and unneeded attributes by intelligent 

systems can lower the workload and thereby improve the performance [53]. Due to the fact that 

both, knowledge in the problem domain as well as in the technology landscape [63], are required 

to adjust a big data analytics system in a specific scenario, the time consumption for the entire 

development team would dynamically increase with the upcoming of new data structures. At 

some point, human workforce would not be capable of integrating new tailored algorithmic 

solutions as quickly as new requirements arise. Since the self-configuration of prescriptive 

analytics models is a largely unexplored field of research [58], businesses need to strive further 

to develop and test such technologies to get an edge over their competitors. 

Various consequences as a result of rapidly evolving dynamic business environments can be 

derived from the studies found. However, none of the publications offers a comprehensive 

overview of all possible challenges as well as opportunities for a particular scenario in terms of 

volume, velocity, variety and veracity. Case studies in customer-oriented businesses [54, 62], the 

tactical domain [57], healthcare [61, 64] and transportation [55] differ in their proposals on how 

software solutions have to be developed to meet predictable and unpredictable future 

requirements, in order for the analysis of the data to fulfil the meaning of an additional big data 

characteristic, the value [54]. 

3.2.3 Big Data Analytics Solutions in Dynamic Business Environments 

As it was exhibited in the literature review and is also validated by quantitative studies [13] and 

the conducted expert interviews, BDA can provide significant advantages to a business. Though, 

the practical incorporation is generally accompanied by many obstacles [22] and this especially 

applies to highly dynamic business environments, which pose additional challenges, since they 

require the analysis solution to be constantly adjusted regarding the new circumstances [9], [61]. 

However, doing so can be a costly endeavor. This comprises, inter alia, the costs for licenses, 

access to additional data sources, administration, acquisition and operation of hardware or the 

booking of cloud services. Those financial expenditures were also autonomously brought up by 

the experts, highlighting their seriousness to practitioners. Even though there are numerous open 
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source solutions that are free to use, this can be deceiving regarding the costs that have to be 

expected, since it is still necessary to ensure the proper implementation and adaptation for the 

desired use case. Considering the complexity of many big data analytics systems, this often 

requires the knowledge of highly demanded, and therefore expensive, experts [65]. Yet, if those 

alterations of the system are not realized, the corresponding expenses are saved, but the 

alignment of the analytics capabilities and the business needs is reduced [54]. While that might 

be unavoidable to a certain degree, at some point, the purpose of the system is not met any 

longer, since the benefit through the provision of superior information is diminished too much. 

At that point, the system should be modified or decommissioned and potentially replaced by a 

new one, since an inadequate analytics application can even result in a negative benefit, when 

based on its outputs, either wrong decisions are made or good opportunities are not seized 

because they are overseen by the system and it is relied on too heavily [66]. Consequently, by 

taking all of the aforementioned implications from the previous lines of argumentation, the SLR 

and the expert interviews into account, numerous considerations need to be made when it comes 

to the application of BDA in dynamic business environments. An overview of those previously 

discussed factors is depicted in Table 5. 

Table 5. Implications of dynamic business environments on BDA 

Name Description 

Data Context 

Changes 

Inaccuracies of the data analysis due to changes of the data context may occur. Even though the 

recipient at the time can be aware of the initial intention, the context may change in the future, 

which in turn may result in extensive and time-consuming changes of the analysis, as they were 

exemplarily indicated for the case of Corona. 

Data Source 

Changes 

Data sources may constantly changes, not only in terms of the data provision in general but also 

regarding its particular quality, content, technical implementation, used language and others. 

Therefore, it can be necessary to adapt the integration of already harnessed sources, or to even 

stop using them, as well as to incorporate new ones. 

Varying System 

Load 

The system load can be extremely dependent on external circumstances, which can lead to highly 

heterogeneous demands when comparing different points in time. However, generally, the 

volume of the data is continuously increasing, independent from its intended purpose. As a 

consequence sophisticated considerations are required, in order to find suitable solutions that 

might be capable in the future. 

Changing 

Bottlenecks 

Although the processing capabilities of a solution in dynamic environments might be able to 

overcome current demand, bottlenecks can be still a source of errors. Possible causes, such as 

network issues, should be taken into account when it comes to the planning and realization. This 

is aggravated by the fact that the bottleneck might change depending on external circumstances 

and the corresponding need for the system’s adaptation. 

Data Structure 

Changes 

Through the additional extension and alterations of the original data sources, changes of the data 

structure may appear. Consequentially, the system planning should take those upcoming 

modifications into account. 

Lack of 

Trustworthiness 

Due to the inclusion of new data sources as well as the evolution of already utilized ones, it is 

necessary to constantly monitor the trustworthiness of the obtained data. Therefore, additional 

analysis might be required to assess and increase the overall veracity of the data. 

Data 

Redundancy 

As a consequence of the massive data collection, management and processing, meticulous 

monitoring is needed. This applies not only to the data but also the sources, preventing possible 

fallacies through duplicated data, which might falsify the results of the analysis. 

Concluding those considerations, we define dynamic business environments in big data as 

settings that are characterized by a constant change of external circumstances, internal 

requirements and technical capabilities, leading to the need for continuous adjustments and 

modifications of the logic and implementation of the BDA solutions incorporated into a business’ 

digital infrastructure. 

In Figure 6, a structured approach, which was also agreed to by all of the questioned experts, 

both, regarding the necessity as well as the concrete design, is depicted, systematizing that 

decision making. The different states that are being traversed throughout the lifespan of such a 

system are depicted, not explicitly mentioning its actual use. In the beginning, the new big data 
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analytics solution is initially implemented. Afterwards, unless it is decided that its general 

purpose has ceased to exist, the system is supposed to always be active, making its mentioning 

superfluous. Ideally, at the point of initial implementation, a BDA application’s alignment with 

the actual business needs is extremely high, allowing for high quality analysis and providing 

valuable insights that enrich the company and its decision making process. However, due to the 

nature of the regarded domain, changes are bound to happen, resulting in a need for thorough 

monitoring. The nature of those changes can be manifold, including but not being limited to the 

emergence of new business needs, the creation of new algorithms and techniques or changes 

regarding the available sources. While some of those changes are apparent (e.g. when new 

business questions cannot be sufficiently answered), others, like the slow decline of a news 

paper’s quality, might be harder to determine. Therefore, this endeavor is already a challenging 

task on its own. Yet, not every change that is perceived, is necessarily relevant. Some might be 

immediately discarded for various reasons [53]. For those that are not, subsequently, the 

potential reactions have to be assessed. This includes the analysis of the change and its effects on 

the value of the system, the exploration of options as well as the forecast of benefits and costs of 

those options. On a high level, there are four potential ways of reacting to a change. The use of 

the system can be continued as usual, its replacement can be decided, it can be decommissioned 

without any substitution or it can be modified. The latter could, for instance, include the 

implementation of enhanced algorithms or the incorporation of new sources. If the solution as a 

whole is to be replaced, it is common to prepare the new one, while the current one is still in use, 

allowing for a seamless transition with as little downtime as possible, once the new system is 

ready for use [67]. In any case, except for the discontinuation of the BDA, the monitoring 

continues, letting the cycle begin again. 

 

 

Figure 6. States of a big data analytics solution in a dynamic business environment 

4 Possible Measures to Cope With Dynamic Business Environments in the 

BDA Domain 

As the result of the above considerations that are outlined in Figure 6, companies, and particularly 

those in dynamic business environments, face three major tasks regarding that aspect. The first 

one is to identify relevant changes, being a prerequisite for an adequate reaction. The second task 

is to determine as precisely as possible, when it is beneficial to invest into the revision of an 

existing system and to which extend or if it should even be completely replaced, respectively 

abolished. The third one is to increase the longevity of the systems that are being implemented as 

well as to reduce the costs for performing necessary adaptions. 
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4.1 Evaluation of the Available Options 

The first two previously deduced tasks, identifying the relevant changes in the business 

environment and evaluating the potential reactions to those changes, are both to be constantly 

conducted, allowing a company to base its decisions regarding its BDA solution on reliable 

information. While some of the changes are apparent, others might require more efforts to be 

spotted, which was also highlighted during the interviews. Some of those measures could include 

the monitoring of relevant technical conferences to get a grasp of new developments regarding 

the relevant algorithms, a structured process to evaluate potential data sources or, as one of the 

experts pointed out during the interviews, regular surveys of the employees, to discover their 

needs and requests. Yet, not every change or request is relevant, therefore, besides the mere 

gathering, there also should be standardized processes to facilitate the according categorization. 

That way, the big picture can be taken into consideration and those decisions are less likely 

based on random factors (e.g. who discovered the change), which an interviewee mentioned as a 

potential risk, when there are no structured processes in place. However, the specific design of 

those processes might highly vary, depending on the organization and system under 

consideration. 

Once such a change was noticed and deemed relevant, there are four general options, as 

depicted in Figure 6. To facilitate the according decision making, a structured process is 

necessary, as it was agreed to by the interviewed experts. The diagram in Figure 7 shows such a 

process, specifying the steps from the registration of a new relevant change to the final decision 

on a course of action. While its foundation is for the most part based on established change 

management strategies from the IT realm [68], [69], the concrete design incorporates the specific 

needs of the regarded domain as well as the possible courses of action, indicated in Figure 6. 

In the beginning, the new change is analysed to create a preliminary list of aspects it may 

potentially affect. Subsequently, the concrete effects of the change are determined and evaluated, 

resulting in its thorough analysis. 

Then, it is incorporated into the existing list of changes that have not yet been acted on. This 

list stems from previous iterations of this process and can also be empty. Any obsolete entries are 

removed from this combined list, resulting in an updated list of changes that is used in the further 

process but is also an input for future iterations. Afterwards, the determined effects of all 

remaining changes are aggregated, to get an overview. Now, the earnings and savings through 

the continued use of the current solution are forecasted, taking into account the effects the 

changes have on its provided gains. Moreover, also the corresponding costs for its operation are 

assessed, allowing to quantify the solutions benefits and concluding its evaluation. Those first 

nine activities of Figure 7 could be labelled as gaining an understanding of the status quo. 

This is followed by the evaluation of two options: on the one hand, the modification of the 

existing solution and, on the other hand, its replacement with a new system. Those tasks can 

either be handled sequentially in an arbitrary order, or in parallel, depending on the available 

resources, with the latter allowing for a faster completion of the decision making process.  

To achieve the assessment of the option of a modification, at first, the previously compiled list 

of changes is walked through, determining potential adjustments to react to each of the entries. 

The adjustments are then each analysed regarding their benefits and costs, with the former being 

compared to the current state of the system. Thereupon, the most beneficial set of adjustments is 

determined and the expected earnings and savings, as well as the expected costs for 

implementing the adjustments and operating the modified solution are calculated, resulting in the 

evaluation of the most beneficial modified solution. 
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Figure 7. Determining the reaction to the occurrence of a relevant change 

Regarding the evaluation of the potential development of a replacement, similar to the list of 

changes, a list of requirements and wished for aspects is consulted. This list is amended with 

new entries that might have become apparent since the last iteration of this process. Properties 

that have become obsolete are removed, and for the remaining set, a forecast of the expected 
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earnings and savings is conducted. Ensuing, a list of potentially beneficial additions to those 

mandatory specifications is created. The different combinations of basic features and extensions 

are then regarded, concerning the expected gains. Subsequently, concepts for the concrete 

implementations of those variants are prepared and the resulting costs for implementation and 

operation determined. Combining the benefits and costs, the most beneficial concept for the 

development of a new solution is identified. 

Once the most beneficial modification as well as the most beneficial concept for a replacement 

are evaluated, those findings are compared with the analysis of the currently used solution and 

the final decision is made according to the results. If the three options (continued use, 

modification, replacement) each have a negative forecast, the system should be discontinued, 

otherwise, the one with the best expected result is to be pursued. 

This recommendation regarding the most favourable course of action is also the output of the 

described process, after undergoing all the phases from gaining an understanding of the status 

quo, over assessment of the option of a modification and evaluation of the potential development 

of a replacement, culminating in the final decision. 

While the general process was agreed to by the interviewed experts, it was also pointed out 

that it is rather high-level, necessitating more specifications for the implementation in concrete 

organizations. This mainly relates to the evaluation of costs and benefits, which is, however, 

highly specific and therefore out of the presented process’ scope. 

Asked for the most common mistakes, the interviewed experts especially stressed that the 

costs and duration for conducting implementations are often underestimated. Potential causes 

that were mentioned are a bias towards new solutions, influencing the evaluation, a gap between 

those making the decisions and estimations and those that are putting the concepts into practice, 

as well as the general complexity of the regarded systems that make it hard to grasp all 

dependencies. Furthermore, the oversimplification of the problem, respectively the attempt of 

taking shortcuts, the drawing of premature conclusions from limited data, the general difficulty 

of mapping effects and causes in complex systems and also the insufficient involvement of all 

relevant stakeholders, which is also in correspondence with [50], were mentioned. An overview 

of those identified common mistakes is depicted in Figure 8. 

While some of those issues are due to the nature of the task and therefore unavoidable, others 

can be solved or mitigated by raising awareness and the implementation of structured processes. 

However, when not properly dealing with them, organizations risk to make decision which are 

not optimal or even plain wrong. This in turn can result in very expensive mistakes, which could 

potentially be detrimental to the organization’s future or at least hamper its success.  

4.2 Facilitating the Modifiability of BDA Solutions 

While the interviewed experts acknowledged the importance of the decision making process, 

three out of four considered the improvement of the modifiability of an existing or envisioned 

BDA solution more important. Asked for their proposed approaches to accomplish this goal, 

there was a variety of answers given. Those include the definition of and adherence to standards, 

helping to uphold the quality, the use of agile development approaches and also the necessity for 

support by the management and organizational accommodations were stressed, which is also in 

concordance with the literature [10]. Besides those rather organizational aspects, it was also 

emphasized that the mindset and qualification of the architects and developers plays a crucial 

role, since more capable ones often produce more generic solutions instead of achieving the bare 

minimum to just fulfil the current needs. 
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Figure 8. A list of typical issues during the evaluation process 

Furthermore, according to the interviews, the application of a compartmentalized design 

concept appears to be a promising solution for the reduction of costs for a BDA solution’s 

modification. In conjunction with a corresponding test strategy, the components would be mostly 

independent, allowing for a comparatively easy modification or replacement, since not the 

system as a whole but only a confined part would be affected. This in turn would highly reduce 

the complexity and therefore the corresponding costs as well as the development time, which 

allows for a more frequent alignment of the analytics capabilities with the actual business needs. 
Dynamic environments require dynamic solutions, which means, that a software artefact needs 

the capability to be as quickly adjusted as variations in the field of application arise. A long time, 

so-called monoliths as single executable systems, with shared resources among the 

interdependent modules, were the primary approach in the software industry [70]. However, as 

the systems grow, the complexity and the effort for maintenance can increase to an unknown 

level [71]. Especially when changes are demanded very frequently, this approach turns out to be 

undesirable. Any change requires the rebooting of the application, which leads to significant 

downtimes [70] while the value of data might decrease in this phase and the desired benefits of 

the system cannot be obtained. Figure 9 proposes, apart from the monolithic approach, how a big 

data analytics system can be organized, delineating two granularities of compartmentalization. 

The layered architecture divides the system among its logical purposes: data acquisition, storage, 

analysis and output. However, this varies only slightly from a monolith due to the fact, that even 

these separated domains can increase in complexity. For instance, if new data sources are to be 

included in the analysis process, every layer needs to implement new functionalities to handle 

the deviating structures. 

A further step towards achieving actual modularity and an extremely high degree of flexibility 

could be taken with the integration of a microservice architecture, where a microservice 
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“provides a business or platform capability through a well-defined API, data contract, and 

configuration” [71], meaning that it has only one single function and “does it well” [71]. While 

the reusability of the individual services for several BDA solutions helps to reduce redundancies 

and thus development costs, this approach also enables high scalability, since each service can be 

started multiple times in parallel over several instances. In combination with a suitable test 

strategy, which might resemble the modular approach proposed in [72], a desired BDA solution 

can be assembled from a variety of microservices. 

As a result, those microservice architectures were not only mentioned as a promising approach 

in the course of the interviews, but also gain interest from academics and practitioners [73]. 

These services are described as autonomous and isolated pieces of software, which means that 

they are designed, developed, tested and deployed independently and have only one small 

purpose each [63], [71]. Accordingly, the individual components are equipped with dedicated 

tools with optimum suitability [70]. This includes the possibility of using distinct programming 

languages for different services, allowing the most appropriate frameworks to be utilized for 

each purpose [63]. In contrast to the monolithic approach, microservice architectures let the 

designed solutions evolve dynamically alongside the general purpose of the big data analytics 

system. For instance, if new data sources arise, the only task of the development department is to 

integrate the capabilities to acquire data from that specific source. While more and more 

functionalities can be provided over time [73], the use of the system has value as soon as a first 

chain of logically coupled microservices is integrated [71]. As a consequence, businesses in 

rapidly evolving dynamic areas might profit from integrating microservice architectures to get an 

edge over their competitors when the conditions for business success are tied to the fast 

processing and integration of new data respectively new data sources. The example in Figure 9 

shows how a microservice architecture can be implemented in big data analytics. As 

recommended by [63] for larger applications, an API gateway is used as an entry point from the 

client side to distribute user requests to the appropriate services. In the figure, the services are 

organized in logical domains based on the layers in the layer architecture. Depending on the 

specific BDA solution, the domains can be further extended with a load balancer or other 

intermediate extensions to support scalability and performance. In addition, some services may 

be interconnected if their functionalities depend on other services. 

 

 

Figure 9. Illustrative division of a monolithic BDA solution into microservices 



78 

 

5 Concluding Remarks 

Big data is a highly prominent area amongst both, researchers and practitioners. However, while 

there are numerous publications regarding the general topic, the implications of an 

implementation in a highly dynamic business environment are not adequately researched. Yet, 

businesses that are reliant on highly volatile data sources or frequently change their business 

questions, respectively the specifics of their analytics, face particular challenges that surpass 

those of less dynamically positioned companies. This article sheds light on the situation of those 

former ones, the consequences regarding the alignment between business and IT and deduces the 

challenges that arise. Resulting out of this, the current impact of dynamic business environments 

on big data analytics was thoroughly investigated and visually illustrated. Additionally, expert 

interviews as well as a structured literature review were carried out that approve and extend 

current problematics. Beyond that, possible counter measures are explained in a detailed way, 

intending to overcome the paucity of existing solutions of this particular research problem. 

Eventually, future works can build on those findings and therefore help to improve the alignment 

between business needs and the IT, even in highly demanding situation. 

However, as one may note, this article is subject to certain limitations, predominantly applying 

to the conducted expert interviews. A total of four different experts were interviewed, who 

together possess over 60 years of work experience in the IT domain. Although this is a sufficient 

number of respondents to get a solid overview, for numerical evaluations the overall sample is 

rather small. Therefore, the results of the extensively conducted interviews cannot be fully 

transferred to a larger group. Nevertheless, all respondents were able to confirm the initial 

suspected problems and additionally added further insights. This in turn influenced the described 

concepts, even though no major changes were deemed necessary by the experts. 

Nevertheless, for the future it is planned to implement the proposed concepts and to conduct 

the interviews again on a larger scale. In doing so, innovations and concepts that appeared to be 

promising can be further investigated, leading to further insights. This primarily concerns the 

modularization of big data system architectures through the use of microservices. With the help 

of those, it can be expected in the future that dynamic changes such as those that occur 

extensively in today’s dynamic business environments can be coped with in a more effective 

manner. 

References 

[1] M. Chen, S. Mao, and Y. Liu, “Big Data: A Survey,” Mobile Networks and Applications, vol. 19, pp. 171–209, 

2014. Available: https://doi.org/10.1007/s11036-013-0489-0 

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” Proceedings of the nineteenth ACM 

symposium on Operating systems principles, ACM SIGOPS Operating Systems Review, ACM, vol. 37, no. 5, 

pp. 29–43, 2003. Available: https://doi.org/10.1145/945445.945450 

[3] K. Nagorny, P. Lima-Monteiro, J. Barata, and A. W. Colombo, “Big Data Analysis in Smart Manufacturing: A 

Review,” International Journal of Communications, Network and System Sciences, vol. 10, no. 3, pp. 31–58, 

2017. Available: https://doi.org/10.4236/ijcns.2017.103003 

[4] L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang, “Big Data Analytics in Intelligent Transportation Systems: 

A Survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 1, pp. 383–398, 2019. 

Available: https://doi.org/10.1109/TITS.2018.2815678 

[5] T. Nguyen, L. Zhou, V. Spiegler, P. Ieromonachou, and Y. Lin, “Big Data Analytics in Supply Chain 

Management: A State-of-the-Art Literature Review,” Computers & Operations Research, vol. 98, pp. 254–

264, 2018. Available: https://doi.org/10.1016/j.cor.2017.07.004 

[6] K. Fanning and E. Drogt, “Big Data: New Opportunities for M&A,” The Journal of Corporate Accounting & 

Finance, vol. 25, no. 2, pp. 27–34, 2014. Available: https://doi.org/10.1002/jcaf.21919 

[7] Y. Hu, D. Gal, and Y. Hong, “Modeling Brand Personality with Business Value of Social Media Analytics: 

Predicting Brand Personality with User-generated Content and Firm-generated Content,” Proceedings of the 

39th ICIS, 2018.  

https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1145/945445.945450
https://doi.org/10.4236/ijcns.2017.103003
https://doi.org/10.1109/TITS.2018.2815678
https://doi.org/10.1016/j.cor.2017.07.004
https://doi.org/10.1002/jcaf.21919


79 

 

[8] P. Maroufkhani, R. Wagner, W. K. Wan Ismail, M. B. Baroto, and M. Nourani, “Big Data Analytics and Firm 

Performance: A Systematic Review,” Information, vol. 10, no. 7, article 226, 2019. Available: 

https://doi.org/10.3390/info10070226 

[9] S. F. Wamba, A. Gunasekaran, S. Akter, S. J.-F. Ren, R. Dubey, and S. J. Childe, “Big Data Analytics and 

Firm Performance: Effects of Dynamic Capabilities,” Journal of Business Research, vol. 70, pp. 356–365, 

2017. Available: https://doi.org/10.1016/j.jbusres.2016.08.009 

[10] P. Mikalef, M. Boura, G. Lekakos, and J. Krogstie, “Big Data Analytics and Firm Performance: Findings from 

a Mixed-Method Approach,” Journal of Business Research, vol. 98, pp. 261–276, 2019. Available: 

https://doi.org/10.1016/j.jbusres.2019.01.044 

[11] A. Ferraris, A. Mazzoleni, A. Devalle, and J. Couturier, “Big Data Analytics Capabilities and Knowledge 

Management: Impact on Firm Performance,” Management Decision, vol. 57, no. 8, pp. 1923–1936, 2019. 

Available: https://doi.org/10.1108/MD-07-2018-0825 

[12] E. Raguseo and C. Vitari, “Investments in Big Data Analytics and Firm Performance: An Empirical 

Investigation of Direct and Mediating Effects,” International Journal of Production Research, vol. 56, pp. 

5206–5221, 2018. Available: https://doi.org/10.1080/00207543.2018.1427900 

[13] O. Müller, M. Fay, and J. vom Brocke, “The Effect of Big Data and Analytics on Firm Performance: An 

Econometric Analysis Considering Industry Characteristics,” Journal of Management Information Systems, 

vol. 35, pp. 488–509, 2018. Available: https://doi.org/10.1080/07421222.2018.1451955 

[14] A. Parlina, K. Ramli, and H. Murfi, “Theme Mapping and Bibliometrics Analysis of One Decade of Big Data 

Research in the Scopus Database,” Information, vol. 11, no. 2, article 69, 2020. Available: 

https://doi.org/10.3390/info11020069 

[15] W. L.Chang and N. Grady, NIST Big Data Interoperability Framework: Volume 1, Definitions, Version 3, 

2019. Available: https://doi.org/10.6028/NIST.SP.1500-1r2 

[16] T. Palpanas, “Knowledge Discovery in Data Warehouses,” ACM SIGMOD Record, vol. 29, no. 3, pp. 88–100, 

2000. Available: https://doi.org/10.1145/362084.362142 

[17] A. Gandomi and M. Haider, “Beyond the Hype: Big Data Concepts, Methods, and Analytics,” International 

Journal of Information Management, vol. 35, no. 2, pp. 137–144, 2015. Available: 

https://doi.org/10.1016/j.ijinfomgt.2014.10.007 

[18] S. Kaisler, F. Armour, J. A. Espinosa, and W. Money, “Big Data: Issues and Challenges Moving Forward,” 

Proceedings of the 46th Hawaii International Conference on System Sciences, IEEE, pp. 995–1004, 2013. 

Available: https://doi.org/10.1109/HICSS.2013.645 

[19] M. Volk, D. Staegemann, and K. Turowski, “Big Data,” Handbuch Digitale Wirtschaft, Springer, vol. 58, pp. 

1–18, 2020. Available: https://doi.org/10.1007/978-3-658-17345-6_71-1 

[20] H. Chen, R. H. L. Chiang, and V. C. Storey, “Business Intelligence and Analytics: From Big Data to Big 

Impact,” MIS Quarterly, vol. 36, no. 4, pp. 1165–1188, 2012. Available: https://doi.org/10.2307/41703503 

[21] D. Staegemann, M. Volk, N. Jamous, and K. Turowski, “Understanding Issues in Big Data Applications – A 

Multidimensional Endeavor,” Proceedings of the 25th Americas Conference on Information Systems (AMCIS), 

2019. 

[22] M. Volk, D. Staegemann, M. Pohl, and K. Turowski, “Challenging Big Data Engineering: Positioning of 

Current and Future Development,” Proceedings of the 4th International Conference on Internet of Things, Big 

Data and Security, SCITEPRESS – Science and Technology Publications, vol. 1, pp. 351–358, 2019. 

Available: https://doi.org/10.5220/0007748803510358 

[23] A. R. Alaei, S. Becken, and B. Stantic, “Sentiment Analysis in Tourism: Capitalizing on Big Data,” Journal of 

Travel Research, vol. 58, pp. 175–191, 2019. Available: https://doi.org/10.1177/0047287517747753 

[24] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic Flow Prediction with Big Data: A Deep Learning 

Approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2014. 

Available: https://doi.org/10.1109/TITS.2014.2345663 

[25] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, “Disease Prediction by Machine Learning Over Big Data 

from Healthcare Communities,” IEEE Access, vol. 5, pp. 8869–8879, 2017. Available: 

https://doi.org/10.1109/ACCESS.2017.2694446 

[26] Z. Khan and T. Vorley, “Big Data Text Analytics: An Enabler of Knowledge Management,” Journal of 

Knowledge Management, vol. 21, pp. 18–34, 2017. Available: https://doi.org/10.1108/JKM-06-2015-0238 

[27] M. Grzegorowski, “Scaling of Complex Calculations over Big Data-Sets,” Active Media Technology, Springer, 

vol. 8610, pp. 73–84, 2014. Available: https://doi.org/10.1007/978-3-319-09912-5_7 

https://doi.org/10.3390/info10070226
https://doi.org/10.1016/j.jbusres.2016.08.009
https://doi.org/10.1016/j.jbusres.2019.01.044
https://doi.org/10.1108/MD-07-2018-0825
https://doi.org/10.1080/00207543.2018.1427900
https://doi.org/10.1080/07421222.2018.1451955
https://doi.org/10.3390/info11020069
https://doi.org/10.6028/NIST.SP.1500-1r2
https://doi.org/10.1145/362084.362142
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.1109/HICSS.2013.645
https://doi.org/10.1007/978-3-658-17345-6_71-1
https://doi.org/10.2307/41703503
https://doi.org/10.5220/0007748803510358
https://doi.org/10.1177/0047287517747753
https://doi.org/10.1109/TITS.2014.2345663
https://doi.org/10.1109/ACCESS.2017.2694446
https://doi.org/10.1108/JKM-06-2015-0238
https://doi.org/10.1007/978-3-319-09912-5_7


80 

 

[28] J. vom Brocke, C. Sonnenberg, and A. Simons, “Value-oriented Information Systems Design: The Concept of 

Potentials Modeling and its Application to Service-oriented Architectures,” Business & Information Systems 

Engineering, vol. 1, pp. 223–233, 2009. Available: https://doi.org/10.1007/s12599-009-0046-3 

[29] K. P. Patten, J. Fjermestad, and B. Whitworth, “How CIOs Use Flexibility to Manage Uncertainty in Dynamic 

Business Environments,” Proceedings of the Fifteenth Americas Conference on Information Systems (AMCIS), 

2009. 

[30] B. Heesen, “Management Challenges in Dynamic Business Environments,” Effective Strategy Execution, 

Springer, pp. 1–23, 2016. Available: https://doi.org/10.1007/978-3-662-47923-0_1 

[31] A. Huang, “A Three-Tier Technology Training Strategy in a Dynamic Business Environment,” Journal of 

Organizational and End User Computing, vol. 14, no. 2, pp. 30–39, 2002. Available: 

https://doi.org/10.4018/joeuc.2002040103 

[32] D. Kim, M. Kim, and H. Kim, “Dynamic Business Process Management Based on Process Change Patterns,” 

2007 International Conference on Convergence Information Technology (ICCIT2007), IEEE, pp. 1154–1161, 

2007. Available: https://doi.org/10.1109/ICCIT.2007.91 

[33] M. Dong, C. Wu, and F. Hou, “Shortest Path Based Simulated Annealing Algorithm for Dynamic Facility 

Layout Problem under Dynamic Business Environment,” Expert Systems with Applications, vol. 36, no. 8, pp. 

11221–11232, 2009. Available: https://doi.org/10.1016/j.eswa.2009.02.091 

[34] L. M. Dyer and C. A. Ross, “Seeking Advice in a Dynamic and Complex Business Environment: Impact on the 

Success of Small Firms,” Journal of Developmental Entrepreneurship, vol. 13, no. 2, pp. 133–149, 2008. 

Available: https://doi.org/10.1142/S1084946708000892 

[35] W. Triaa, L. Gzara, and H. Verjus, “Organizational Agility Key Factors for Dynamic Business Process 

Management,” 2016 IEEE 18th Conference on Business Informatics (CBI), IEEE, pp. 64–73, 2016. Available: 

https://doi.org/10.1109/CBI.2016.16 

[36] D. I. Prajogo, “The Strategic Fit Between Innovation Strategies and Business Environment in Delivering 

Business Performance,” International Journal of Production Economics, vol. 171, part 2, pp. 241–249, 2016. 

Available: https://doi.org/10.1016/j.ijpe.2015.07.037 

[37] J. Luftman, “Assessing Business-IT Alignment Maturity,” Communications of the Association for Information 

Systems, vol. 4, 2000. Available: https://doi.org/10.17705/1CAIS.00414 

[38] J. Rowley and F. Slack, “Conducting a Literature Review,” Management Research News, vol. 27, no. 6, pp. 

31–39, 2004. Available: https://doi.org/10.1108/01409170410784185 

[39] C. Okoli, “A Guide to Conducting a Standalone Systematic Literature Review,” Communications of the 

Association for Information Systems, vol. 37, pp. 879–910, 2015. Available: 

https://doi.org/10.17705/1CAIS.03743 

[40] J. Vom Brocke, A. Simons, B. Niehaves, K. Reimer, R. Plattfaut, and A. Cleven, “Reconstructing the Giant. 

On the Importance of Rigour in Documenting the Literature Search Process,” Proceedings of the ECIS 2009, 

article 161, 2009.  

[41] C. C. Preston and A. M. Colman, “Optimal Number of Response Categories in Rating Scales: Reliability, 

Validity, Discriminating Power, and Respondent Preferences,” Acta Psychologica, vol. 104, no. 1, pp. 1–15, 

2000. Available: https://doi.org/10.1016/S0001-6918(99)00050-5 

[42] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result of IoT Adoption in Manufacturing,” 

Procedia CIRP, vol. 55, pp. 290–295, 2016. Available: https://doi.org/10.1016/j.procir.2016.07.038 

[43] A. P. Hassan, “Enhancing Supply Chain Risk Management by Applying Machine Learning to Identify Risks,” 

Business Information Systems, Springer, vol. 354, pp. 191–205, 2019. Available: https://doi.org/10.1007/978-

3-030-20482-2_16 

[44] C. Siebert, J. Hartmann, M. Heitmann, and C. Schamp, “Accuracy of Automated Sentiment Analysis,” SSRN 

Journal, 2019. Available: https://doi.org/10.2139/ssrn.3489963 

[45] A. Bruns and J. Burgess, “Twitter Hashtags from Ad Hoc to Calculated Publics,” Hashtag Publics, Peter Lang 

US, pp. 1–22, 2015.  

[46] A. Katal, M. Wazid, and R. H. Goudar, “Big data: Issues, Challenges, Tools and Good Practices,” Sixth 

International Conference on Contemporary Computing, IEEE, pp. 404–409, 2013. Available: 

https://doi.org/10.1109/IC3.2013.6612229 

[47] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data Mining with Big Data,” IEEE Transactions on Knowledge and 

Data Engineering, vol. 26, no.1, pp. 97–107, 2014. Available: https://doi.org/10.1109/TKDE.2013.109 

https://doi.org/10.1007/s12599-009-0046-3
https://doi.org/10.1007/978-3-662-47923-0_1
https://doi.org/10.4018/joeuc.2002040103
https://doi.org/10.1109/ICCIT.2007.91
https://doi.org/10.1016/j.eswa.2009.02.091
https://doi.org/10.1142/S1084946708000892
https://doi.org/10.1109/CBI.2016.16
https://doi.org/10.1016/j.ijpe.2015.07.037
https://doi.org/10.17705/1CAIS.00414
https://doi.org/10.1108/01409170410784185
https://doi.org/10.17705/1CAIS.03743
https://doi.org/10.1016/S0001-6918(99)00050-5
https://doi.org/10.1016/j.procir.2016.07.038
https://doi.org/10.1007/978-3-030-20482-2_16
https://doi.org/10.1007/978-3-030-20482-2_16
https://doi.org/10.2139/ssrn.3489963
https://doi.org/10.1109/IC3.2013.6612229
https://doi.org/10.1109/TKDE.2013.109


81 

 

[48] R. Y. K. Lau, S. S. Y. Liao, K. F. Wong, and D. K. W. Chiu, “Web 2.0 Environmental Scanning and Adaptive 

Decision Support for Business Mergers and Acquisitions,” MIS Quarterly, vol. 36, no. 4, pp. 1239–1268, 2012. 

Available: https://doi.org/10.2307/41703506 

[49] M. Tenemaza, L.-A. Edison, M. Peñafiel, Z. Juan, A. de Antonio, and J. Ramirez, “Identifying Touristic 

Interest Using Big Data Techniques,” Advances in Artificial Intelligence, Software and Systems Engineering, 

Springer, vol. 965, pp. 169–178, 2020. Available: https://doi.org/10.1007/978-3-030-20454-9_17 

[50] W. A. Günther, M. H. Rezazade Mehrizi, M. Huysman, and F. Feldberg, “Debating Big Data: A Literature 

Review on Realizing Value from Big Data,” The Journal of Strategic Information Systems, vol. 26, no. 3, pp. 

191–209, 2017. Available: https://doi.org/10.1016/j.jsis.2017.07.003 

[51] S. Akter, S. F. Wamba, A. Gunasekaran, R. Dubey, and S. J. Childe, “How to Improve Firm Performance 

Using Big Data Analytics Capability and Business Strategy Alignment?” International Journal of Production 

Economics, vol. 182, pp. 113–131, 2016. Available: https://doi.org/10.1016/j.ijpe.2016.08.018 

[52] R. Likert, “A Technique for the Measurement of Attitudes,” Archives of Psychology, vol. 22, pp. 5–55, 1932. 

[53] S.-Y. Lin, C.-C. Chiang, Z.-S. Hung, Y.-H. Zou, “A Dynamic Data-Driven Fine-Tuning Approach for Stacked 

Auto-Encoder Neural Network,” 2017 IEEE 14th International Conference on e-Business Engineering 

(ICEBE), pp. 226–231, 2017. Available: https://doi.org/10.1109/ICEBE.2017.43 

[54] T. C.-K. Huang, P.-T. Yang, and J.-H. Teng, “Change detection model for sequential cause-andeffect 

relationships,” Decision Support Systems, vol. 106, pp. 30–43, 2018. Available: 

https://doi.org/10.1016/j.dss.2017.11.007 

[55] T. S. J. Darwish and K. Abu Bakar, “Fog Based Intelligent Transportation Big Data Analytics in The Internet 

of Vehicles Environment: Motivations, Architecture, Challenges, and Critical Issues,” IEEE Access, vol. 6, pp. 

15679–15701, 2018. Available: https://doi.org/10.1109/ACCESS.2018.2815989 

[56] C. Qin, H. Eichelberger, and K. Schmid, “Enactment of Adaptation in Data Stream Processing with Latency 

Implications – A Systematic Literature Review,” Information and Software Technology, vol. 111, pp. 1–21, 

2019. Available: https://doi.org/10.1016/j.infsof.2019.03.006 

[57] O. Savas, Y. Sagduyu, J. Deng, and J. Li, “Tactical Big Data Analytics,” ACM SIGMETRICS Performance 

Evaluation Review, vol. 41, no. 4, pp. 86–89, 2014. Available: https://doi.org/10.1145/2627534.2627561 

[58] A. Bousdekis, N. Papageorgiou, B. Magoutas, D. Apostolou, and G. Mentzas, “Sensor-driven Learning of 

Time-Dependent Parameters for Prescriptive Analytics,” IEEE Access, vol. 8, pp. 92383–92392, 2020. 

Available: https://doi.org/10.1109/ACCESS.2020.2994933 

[59] N. Sachdeva, P. K. Kapur, and G. Singh, “Selecting appropriate cloud solution for managing big data projects 

using hybrid AHP-entropy based assessment,” 2016 International Conference on Innovation and Challenges in 

Cyber Security (ICICCS-INBUSH), IEEE, pp. 135–140, 2016. Available: 

https://doi.org/10.1109/ICICCS.2016.7542351 

[60] Z. Wang, Q. Xu, K. Ma, Y. Jiang, X. Cao, and Q. Huang, “Adversarial Preference Learning with Pairwise 

Comparisons,” Proceedings of the 27th ACM International Conference on Multimedia, ACM, pp. 656–664, 

2019. Available: https://doi.org/10.1145/3343031.3350919 

[61] W. Noonpakdee, A. Phothichai, and T. Khunkornsiri, “Challenges of Big Data Implementation in a Public 

Hospital,” 2019 28th Wireless and Optical Communications Conference (WOCC), IEEE, pp. 1–5, 2019. 

Available: https://doi.org/10.1109/WOCC.2019.8770562 

[62] J. Wang, F. Liu, Y. Song, and J. Zhao, “A Novel Model: Dynamic Choice Artificial Neural Network 

(DCANN) for an Electricity Price Forecasting System,” Applied Soft Computing, vol. 48, pp. 281–297, 2016. 

Available: https://doi.org/10.1016/j.asoc.2016.07.011 

[63] S. Zhelev and A. Rozeva, “Using Microservices and Event Driven Architecture for Big Data Stream 

Processing,” Proceedings of the 45th International Conference on Application of Mathematics in Engineering 

and Economics (AMEE '19), AIP Publishing, vol. 2172, no. 1, pp. 0900101–0900108, 2019. Available: 

https://doi.org/10.1063/1.5133587 

[64] K. Adnan, R. Akbar, S. W. Khor, and A. B. A. Ali, “Role and Challenges of Unstructured Big Data in 

Healthcare,” Data Management, Analytics and Innovatio. Advances in Intelligent Systems and Computing, 

Springer, vol. 1042, pp. 301–323, 2020. Available: https://doi.org/10.1007/978-981-32-9949-8_22 

[65] U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody, “Critical Analysis of Big Data Challenges and 

Analytical Methods,” Journal of Business Research, vol. 70, pp. 263–286, 2017. Available: 

https://doi.org/10.1016/j.jbusres.2016.08.001 

https://doi.org/10.2307/41703506
https://doi.org/10.1007/978-3-030-20454-9_17
https://doi.org/10.1016/j.jsis.2017.07.003
https://doi.org/10.1016/j.ijpe.2016.08.018
https://doi.org/10.1109/ICEBE.2017.43
https://doi.org/10.1016/j.dss.2017.11.007
https://doi.org/10.1109/ACCESS.2018.2815989
https://doi.org/10.1016/j.infsof.2019.03.006
https://doi.org/10.1145/2627534.2627561
https://doi.org/10.1109/ACCESS.2020.2994933
https://doi.org/10.1109/ICICCS.2016.7542351
https://doi.org/10.1145/3343031.3350919
https://doi.org/10.1109/WOCC.2019.8770562
https://doi.org/10.1016/j.asoc.2016.07.011
https://doi.org/10.1063/1.5133587
https://doi.org/10.1007/978-981-32-9949-8_22
https://doi.org/10.1016/j.jbusres.2016.08.001


82 

 

[66] P. Aversa, L. Cabantous, and S. Haefliger, “When Decision Support Systems Fail: Insights for Strategic 

Information Systems from Formula 1,” The Journal of Strategic Information Systems, vol. 27, no. 3, pp. 221–

236, 2018. Available: https://doi.org/10.1016/j.jsis.2018.03.002 

[67] G. G. Claps, R. Berntsson Svensson, and A. Aurum, “On the Journey to Continuous Deployment: Technical 

and Social Challenges Along the Way,” Information and Software Technology, vol. 57, pp. 21–31, 2015. 

Available: https://doi.org/10.1016/j.infsof.2014.07.009 

[68] P. R. Kuruppuarachchi, P. Mandal, and R. Smith, “IT Project Implementation Strategies for Effective Changes: 

A Critical Review,” Logistics Information Management, vol. 15, no. 2, pp. 126–137, 2002. Available: 

https://doi.org/10.1108/09576050210414006 

[69] D. Moitra, “Managing Change for Software Process Improvement Initiatives: A Practical Experience-based 

Approach,” Softw. Process: Improve. Pract., vol. 4, no. 4, pp. 199–207, 1998. Available: 

https://doi.org/10.1002/(SICI)1099-1670(199812)4:4<199::AID-SPIP107>3.0.CO;2-D 

[70] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina, 

“Microservices: Yesterday, Today, and Tomorrow,” Present and Ulterior Software Engineering, Springer, pp. 

195–216, 2017. Available: https://doi.org/10.1007/978-3-319-67425-4_12 

[71] B. Familiar, Microservices, IoT, and Azure. Leveraging DevOps and Microservice Architecture to Deliver 

SaaS Solutions, Apress, New York, 2015. Available: https://doi.org/10.1007/978-1-4842-1275-2  

[72] D. Staegemann, J. Hintsch, and K. Turowski, “Testing in Big Data: An Architecture Pattern for a Development 

Environment for Innovative, Integrated and Robust Applications,” Proceedings of the WI2019, pp. 279–284, 

2019. 

[73] A. Freymann, F. Maier, K. Schaefer, and T. Böhnel, “Tackling the Six Fundamental Challenges of Big Data in 

Research Projects by Utilizing a Scalable and Modular Architecture,” Proceedings of the 5th International 

Conference on Internet of Things, Big Data and Security, SCITEPRESS – Science and Technology 

Publications, pp. 249–256, 2020. Available: https://doi.org/10.5220/0009388602490256 

 

https://doi.org/10.1016/j.jsis.2018.03.002
https://doi.org/10.1016/j.infsof.2014.07.009
https://doi.org/10.1108/09576050210414006
https://doi.org/10.1002/(SICI)1099-1670(199812)4:4%3C199::AID-SPIP107%3E3.0.CO;2-D
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-1-4842-1275-2
https://doi.org/10.5220/0009388602490256

