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Abstract. If everything is a signal and combination of signals, everything can 

be represented with Fourier representations. Then, is it possible to represent a 
signal with a conditional dependency to input data? This research is devoted to 

the development of Sinusoidal Neural Networks (SNNs). The motivation to 

develop SNNs is to design an artificial neural network (ANN) algorithm that 
can learn faster. A short review of the history of biological neurons helps to 

identify components that should be redesigned in ANNs. After the components 

are identified, a new neural network algorithm called SNN is proposed. 
Experiments are conducted to show the practical results of the algorithm. 

According to the experiments, the proposed neural network can reach high 

accuracy rates faster than the standard neural networks, while an interesting 

generalization capacity is obtained for the developed algorithm. Even though 
the promising results are achieved, further research is necessary to test if SNNs 

are capable of learning faster than existing algorithms in real-life cases. 

Keywords: Artificial Neural Networks, Fourier Neural Networks, Periodic 
Functions, Activation Function, Node Operation. 

1 Introduction 

Deep neural network (DNN) algorithms are being used as solutions to problems from various 

research and business areas. Although DNN algorithms let the research community handle many 

tasks, they are dependent on data, even more than other machine learning algorithms. Most of 

the solutions which use DNNs are using models that learn with supervision. Supervised learning 

is a learning method where the neural networks learn to map given input data to given output 

data, which requires each sample in the training set to be labeled by humans. In the solutions 

which require supervised learning DNNs should have not only a high amount of data, but also 

labeled data. This situation created a new market where the data is valuable and computation 

resources that can train the DNNs faster are on demand. 

Speed of training and inference operations for DNNs are crucial. It is almost a must to use a 

GPU computation unit for DNN models in the production level. However, these GPU 
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computation units are more expensive than the regular CPU computation units which are used as 

web servers. In March 2016, a reinforcement learning model so-called AlphaGo has won against 

Lee Sedol in the game of Go. AlphaGo has created a big impact and awareness to the neural 

networks. On the other hand, it was also emphasized that DNNs can only be the tool of 

businesses rather than individuals. An analysis [1] calculated the cost of AlphaZero, a new 

version of AlphaGo. To train the AlphaZero neural network model to reach the same level with 

AlphaGo that has won against Lee Sedol, three days and approximately 35 million dollars are 

necessary only for the payment of computation units [1]. This example not only shows the lack 

of opportunity for using DNNs by individuals but also highlights the necessity of the methods 

and algorithms which can reduce the learning time thus reducing the expenditures made on 

computation power. Therefore, improvements which are going to speed up the learning process 

and will make the neural network algorithms require fewer data will help to researches and 

businesses. 

Improvements for neural network algorithms can be done on several components of neural 

networks such as activation functions, learning rate calculations, backpropagation calculations, 

and network architectures. For improvements, node operation of neural networks is not changed 

frequently. Therefore, linear equation (1) is used as the node operation of neural networks [2].  

 

 

          

 

   

   

Where  

x is the input of neurons,  

n is a neuron indicator, 

w is the weight (multiplier) of a neuron, 

  is the bias. 

 

 

(1) 

 

In this article, the node operation is intended to be changed to improve the neural network 

algorithm. To define the new node operation, a review of biological neurons, and an assumption 

about the behavior of signal transmission in biological neurons are discussed in Section 2. After 

that, the assumed behavior of signal transmission in biological neurons is used to define new 

node operation in Section 3. This way, we are confident to take an important step towards an 

artificial neural network (ANN) that learn faster. Experiments are presented in Section 4. 

Section 5 provides brief conclusions. 

2 Background 

2.1 Biological Neurons 

Biological neurons are the building blocks of the information processing units of all species. 

Although the cellular structure of the biological neurons is known, the working principle of 

neurons enabling the learning process is still unclear. In this section, some concepts of biological 

neurons are reviewed. After that, the behavior of the action potential concept is put in relation to 

activation and node operation components of artificial neural networks. 

Axon 

Axon is the long neuronal process that ensures the conduction of information from the cell 

body to the nerve terminal. German anatomist Otto Friedrich Karl Deiters first distinguished the 

axon from the dendrites. The axon initial segment was originally identified by the Swiss Rüdolf 
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Albert von Kölliker and the German Robert Remak [3]. It is the extension of a neuron to another 

neuron’s dendrites transmitting the information. Axons can be with myelin and without myelin. 

There can only be one axon in one neuron. 

Myelin Sheath 

“Myelin sheath is a layer that is made of proteins and fats. Myelin sheaths insulate the axons 

of neurons from outside of the neural cells [4]. Myelin sheath speeds up the action potential 

conduction in an axon. Therefore, the information is transmitted faster from the presynaptic 

neuron to the postsynaptic neuron. 

When myelin sheath covers the axon (see Figure 1), “transmembrane currents can only occur 

at the nodes of Ranvier where the axonal membrane is exposed”. Therefore, the action potential 

occurs only in Ranvier nodes. [5]. It can be imagined as the myelin sheath is a jumping ramp for 

the information that flows through the axon. 

 

 

Figure 1. A basic visualization of a biological neuron and graph of membrane potential 

Action Potential 

Action potentials are activities which are triggered by the incoming signals coming from 

dendrites and cell body, respectively. The signals that are received from dendrites transmit 

through the membrane of the cell body. These signals reach the axon and trigger the special 

types of voltage-gated ion channels embedded in a cell’s plasma membrane. When the 

membrane potential is under a defined threshold, the voltage-gated sodium channels are closed. 

When the membrane potential is above the defined threshold, voltage-gated sodium channels are 

open. When sodium channels are open, sodium ions, which are located outside of the cell, get 

into the axon. This triggers a chain reaction where the increasing potential triggered by sodium 

channels triggers the nearby sodium channels. When the membrane potential reaches to 40 mV, 

voltage-gated sodium channels close. After voltage-gated sodium channels are opened, voltage-

gated potassium channels which take the potassium ions (  ) out of the cell also open with a 

delay. When potassium channels are opened, the sodium channels are closed. Therefore, 

membrane potential starts decreasing. Potassium channels start closing when the membrane 

potential descends. This activity takes some time. Therefore, membrane potential gets lower than 

resting potential. During the opening and closing activities of voltage-gated sodium and 

potassium channels, sodium-potassium pumps continuously take potassium ions in and evacuate 
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sodium ions out. This process stabilizes the amount of sodium and potassium ions in the cell and, 

also fixes the potential overshooting of the voltage-gated potassium channel [6], [7], [8]. 

Sinusoidal Signals in Information Transmission 

In conclusion, dendrites of the cell take the signals in the cell body. Signal flows through the 

membrane of the cell and reaches the axon. If the signal is powerful enough, the action potential 

starts. Signal flows through axon and Ranvier Nodes (if there is myelin sheath around axon) and 

the signal reaches the synapses which connect to dendrites of the postsynaptic neuron. 

The most important fact in information flow is action potential. If a sinusoidal signal is 

bounded in a specific region, a signal similar to action potential can be obtained. When a signal 

in axon reaches to the synapses, the voltage value can be any point on the signal of the action 

potential. In this research, the author assumes that the phenomena of action potential have the 

behavior of a sinusoidal signal. Length and width of the axon, number of Ranvier nodes, length 

of telodendria (end of an axon) determines the voltage value that is transmitted to the synapses. 

As a result, it is assumed that the transmission of information between neurons is made via 

sinusoidal signals which can be adjusted by the features and components of the axon. 

Because the transmitted signals are sinusoidal signals, the neural networks which are using 

periodic functions such as sine and cosine as node operation or activation function are pursued to 

be developed. 

2.2 Sine as Activation Function and Node Operation 

The non-linear functions which are commonly used in neural networks are tanh, sigmoid, and 

softmax which are monotonic functions. “It is well known that units with monotonic activation 

functions generate a single hyperplane which divides the input space into two regions” [9]. This 

brings a case that the neural network is forced to approach input space to a bounded region. This 

case ends up with neural networks that first approach the bounded region before they start 

mapping the inputs to the expected output, therefore the training process becomes slower. If 

there was an activation function that prevents this artifact, that function could help neural 

networks train faster. The candidate activation function is found to be a periodic function, 

because periodic functions can divide the input space to an infinite number of regions. 

The use of periodic functions in neural networks is not new. In 1999, Josep M. Sopena 

published a paper [9] that proposes a neural network algorithm that uses sine function as the 

activation function in neural networks. The paper [10] investigates the use of sine as the 

activation function and proves the ability of sine function as the activation function. The 

confusing fact for the researches on this subject is naming the purpose of sine. The way that sine 

is executed determines its purpose. While it can be used as an activation function, it can also be 

assumed that it is used as the node operation. In this research, it is accepted that if the sine is 

executed on top of sum of node operations, it is used as the activation function, while the sine 

that is executed just after every node operation       (before summation of neuron outputs) 

is used as the node operation. 

The sine activation function lets the neural network to have alternative input values for the 

same output value. Therefore, if it is thought from a probability perspective, the probability value 

1 can be obtained with an infinite number of input values (Figure 2). 

As can be seen from Figure 2, sine function can get any output value with an infinite number 

of alternative input values because it is a periodic function, whereas the sigmoid function can 

divide the space only to two regions.  

[9] researches the use of sine function as the activation function. The paper stresses that the 

infinite number of divided spaces can help neural networks to train faster. Especially the 

experiment made with two spiral dataset shows the strong impact of the sine activation function. 

The authors claims that “with the correct range (range refers to the range of initial weights), the 

learning speed obtained with sine functions is 40 times greater than the fastest current method” 

[9]. In the conclusion section of the paper, the authors state that the similarities between neural 
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network models with sine activation function and Fourier series bring an opportunity to interpret 

weights in terms of frequencies. The sine activation function shows that it can be used not only 

as an activation function that divides the space into infinite regions but also to find a sum of sine 

functions that create Fourier series-like representation of input-to-output mapping. 

 

 

Figure 2. Output of artificial neural networks activated with sine function and sigmoid function 

In the paper [10], the experiments made with the MNIST [20] dataset has shown that the use 

of sine function and tanh function as the activation has not given different accuracy rates. This 

may be due to the fact that the tanh function and sine function behave similarly for small values. 

Sine has been used not only as an activation function but also as a node operation. The neural 

network algorithms using sine as node operation were called Fourier Neural Networks (FNNs) in 

previous researches, namely [19], [11], [14]. In the paper [15], the performance of three FNNs is 

compared. The paper shows and states that none of the FNN algorithms outperforms the vanilla 

neural network model (standard neural network which has linear node operation that is activated 

with sigmoid function). The FNN algorithms which are examined in the [15] are FNN of Gallant 

and White [19], FNN of Silvescu [11], and FNN of Liu [14]. 

Gallant and White published their paper “There exists a neural network that does not make 

avoidable mistakes” in 1988 [19]. This was the earliest research related to the subject of Fourier-

like neural networks. In the paper, the authors suggested a modified version of cosine function as 

the activation function in the artificial neural network. They used the term “Cosine Squasher” for 

the formula (4). 
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Adrian Silvescu published his paper “Fourier Neural Networks” in 1999 [11]. The author 

proposed a different algorithm than conventional ones. The node operations held in each node in 

the layers were not summed as it was in previous algorithms. In the proposed algorithm, the 

multiplication of cosines took the place of the sum of linear functions. The author uses cosine 

representation for                . After that, the sigmoid function is applied to get values 

between 0 and 1 as the output for the function. Hereby, the function (2) is derived [11]. 
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            =                          
                       (2) 

Another type of FNN is proposed in the paper [12]. The function of node operation is more 

complex than the previous ones. It uses sine and cosine functions together like it is a Fourier 

series representation. The function can be seen in formula (3.1) The interesting fact in this 

function is that the frequency parameters of sine and cosine are the same. This situation will 

restrict the function to go to zero only when the amplitude of sine and cosines goes to zero. This 

may solve the vanishing gradient problem if the amplitudes of sine and cosine are given big 

enough. On the other hand, it may cause a situation where the function cannot converge to lower 

error rates. It is also necessary to indicate that sine and cosine functions are equivalent to each 

other with shifted phase    . Therefore, the function can also be written as (3.2) or (3.3). In this 

case, the same term is duplicated with a shifted phase and multiplied with different factors. The 

function is taken from [13]. 
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The most complex and effective version of the proposed FNNs is the FNN of Liu [14]. The 

function is similar to the FNN of Tan, Zuo, Cai. The only difference is that the frequency 

parameters of sine and cosine are not the same. Therefore, including the amplitudes, there are six 

parameters to adjust. Formula (4) is taken from [15]. 
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Two spirals experiment that is conducted in [14] shows that this FNN has the remarkable 

capability to represent this complex dataset perfectly. The results are considered good. The 

receptive field that is created by FNN of Liu for two spirals problem is shown in Figure 6. This 

shows that the FNNs have a potential for developing deep neural network models with 

capabilities of high accuracy and fast performance. 

There are successful and failed examples of FNNs. When sine function is used as an activation 

function; the infinite space division is aimed. On the other hand, when sine function (or cosine 

function or both together) are used as node operation in FNNs, Fourier representation of input-

to-output mapping is aimed. In this article, the sine is used as node operation where it is analyzed 

and redesigned using unit circles. Because the functional behavior of a neural network using sine 

function as node operation can be visualized using unit circles. In the remainder of the article, a 

neural network using sine function is called a sinusoidal neural network (SNN). 

3 Designing the Node Operation 

Through the research, it is decided to visualize the functional behavior of the sine function in 

neural networks by using the unit circle, as it helps to understand the behavior of sine function 

easier [16]. The unit circle is a circle where the center of the circle having value 1 as radius sits 
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on the origin of a coordinate plane. Each quarter in the circle has angle π/2 and, the x-axis of the 

circle represents cosine while the y-axis of the circle represents sine. All of the trigonometric 

functions of the angle θ (theta) can be constructed geometrically in terms of a unit circle centered 

at O [17] (see Figure 4). 

 

 

Figure 3. Unit circle demonstrating trigonometric functions [18] 

By using the unit circle, the behavior of the sum of sine functions which create the general 

mapping function of the sinusoidal neural networks can be seen in Figure 5 for formula (S.1), in 

Figure 6 for formula (S.2) and, Figure 7 for formula (S.3). 

 

                  S.1 

                     S.2 

                       S.3 

   

The derivative of the functions is used for backpropagation. Therefore, it is also necessary to 

mention them. The derivatives of S.1, S.2, and S.3 with respect to their parameters can be found 

in S.b.1, S.b.2, S.b.3, respectively. The function labels of derivatives are numbered with n as 

S.b.1.n. S.b.1.1 represents the derivative of S.1 with respect to   , S.b.1.2 represents the 

derivative of S.1 with respect to  , S.b.2.1 represents the derivative of S.2 with respect to   , 

S.b.2.2 represents the derivative of S.2 with respect to   , S.b.2.3 represents the derivative of S.2 

with respect to  , S.b.3.1 represents the derivative of S.3 with respect to   , S.b.3.2 represents 

the derivative of S.3 with respect to   , S.b.3.3 represents the derivative of S.3 with respect to  . 
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In formula S.1, there is only one weight (  ) which controls the phase (angle) of the sine 

function. In the unit circle, it is the rotation amount of the vector. As can be seen from the 

Figure 5 of formula S.1, the amplitude of the sine is fixed to value 1. Because the adjustments 

can be done only on the rotation-wise, it is harder to approximate a function with this formula. If 

the samples in the dataset that we use to train the neural network are not spread to a wide range, 

this formula can approximate the output function. Otherwise, if samples are distributed to a wide 

range, the formula is not capable to approximate the output function with high accuracy. 

 

Figure 4. Representation of S.1 with unit circles that are combined end-to-end 

In formula S.2, two weights adjust the phase and amplitude of the sine function. If it is 

represented with the unit circle, it can be seen that the amplitude of the sine function is not 

limited to value 1 as in formula 1. Thus, the adjustments, which will be done to lower the error, 

can be made on both weights. This lets the neural network approximate more complex functions 

that map dataset with samples distributed to a wide range of values. Besides, it is necessary to 

indicate that the initial weights for    can also be negative. From the unit circle representation, it 

may seem like the negative values for    will cause a negative radius for each unit circle. But 

this is not true. When the values for    are negative, unit circle take an upside-down position, 

which refers to a 2π phase shift. 

 

Figure 5. Representation of S.2 with unit circles that are combined end-to-end 
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Formula S.3 is slightly modified formula S.2. The only difference of it is that the input value x 

also affects the amplitude of the signal. Theoretically, this increases the ability to approximate 

more complex functions. The potential drawback is that this may also raise the uncertainty of the 

output function. 

 

Figure 6. Representation of S.3 with unit circles that are combined end-to-end 

To see the practical results of the SNNs, experiments with two datasets are conducted. In 

addition to the SNNs, a common artificial neural network algorithm using the linear function as 

node operation and one of sigmoid, softmax, or tanh functions as activation are used to compare 

the results. The common artificial neural network algorithm is called a standard neural network 

in experiments. 

4 Experiments 

Experiments are conducted to compare SNNs with three formulas that are mentioned above (S.1, 

S.2, S.3) and a standard neural network. Initial weights of SNN are distributed with normal 

distribution, and they are normalized to a range [-0.1,0.1] while -0.1 is the minimum value and 

0.1 is the maximum value for normalization. SNN does not have any activation function in the 

hidden and output layers. The error is calculated by subtracting the target value from the output 

of the neural network. 

The standard neural networks differ for each dataset. For MNIST [20] dataset, the hidden layer 

is activated with ReLU [18] and the output layer is activated with softmax function while the 

error is calculated with a categorical cross-entropy function. For two spirals, the hidden layer is 

activated with ReLU, and the output layer is activated with tanh function while the error is 

calculated with mean squared error function. These parameters are chosen because they let the 

model reach to the highest accuracy. 

For both SNNs and standard neural network, the stochastic gradient descent method is used to 

backpropagate the calculated errors. The batch size for training is 1. 

For experiments, Python language is used to develop. To build a standard neural network, 

Tensorflow/Keras library is used. Tensor operations from the PyTorch library are used to build 

the SNN from scratch. The code of experiment for SNN and standard neural network can be 

found in the GitHub repository in the link [21]. 
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4.1 MNIST 

In the first experiment, MNIST [20] dataset is used. The MNIST dataset is the dataset composed 

of hand-written images, and it is mostly used to test the effectiveness of a new algorithm in 

machine learning. It has 60 000 images for training and 10 000 images for testing. A feed-

forward neural network model having one hidden layer with 128 nodes (neurons) is used to test 

the newly designed node operation formulas. There are no activation functions applied to the 

neural network and the error rate is calculated by only subtracting the expected output from the 

output of the neural network. The reason for not applying appropriate error functions is to restrict 

the neural network from any other optimizers. For the backpropagation, a stochastic gradient 

descent algorithm is used. The accuracy rate is the metric that is used to assess the success of the 

formula. The results of the experiment can be seen in Table 1. 

Table 1. Test results from the MNIST experiment 

Formula Accuracy (1 Epochs) Accuracy (5 Epochs) Accuracy (10 Epochs) 

S.1 90.8% 92.7% 93.4% 

S.2 90.7% 92.8% 93.8% 

S.3 93.6% 96.16% 96.9% 

Standard 93.3% 97.5% 97.6% 

As it can be seen from the test results, the third algorithm has reached to 93% accuracy rate 

much faster than the first and the second algorithms, because the third algorithm is using more 

parameters that can be adjusted for mapping the input to output. It was expected that the S.2 

would give considerably better results than the first function because the multiplier of sine 

enables the neural network to adjust the amplitude of sine functions as well. Adjusting the 

amplitude of sine could enable the model converge to a smaller error rate with a fewer number of 

nodes. On the other hand, it can be seen that the standard neural network has similar results with 

SNN S.3. On top of that, it reaches to accuracy rates higher than all SNNs for further epochs. It 

is necessary to mention that not any special error function or activation function are used in 

neural networks with sine node operation. With an appropriate error function, the neural 

networks with sine node operations could reach higher accuracy rates with the same number of 

epochs. 

4.2 Two Spirals 

Another experiment is conducted with two spiral problem. Two spiral problem is a hard problem 

to solve for neural networks. Therefore, since the beginning of neural network researches, two 

spiral problem is used as a benchmark to evaluate neural network algorithms. In the problem, 

two spirals are intertwined, and the dataset of the problem includes x and y coordinates of the 

points in each spiral as input and 0 and 1 as labels for each spiral as output. The neural networks 

with sine node operations employing each formula and a standard neural network are used in the 

experiment. Two metrics are used to evaluate the models. The first metric is the accuracy rate, 

the second metric is the receptive field. The reason for having a receptive field as an evaluation 

metric is to see the generalization capability of models to classify values which are not included 

in the dataset. All neural network models are using 2-16-16-1 architecture, where 2 is the number 

of input nodes, 16 is the number of nodes in hidden layers and 1 is the number of output nodes. 

The neural networks are trained with a mean squared error. For training and testing purposes, 

two distinct datasets having 2000 samples and including normally distributed random values in 

the range [0,0.05] as noise are created. Noise values that are added to the training and testing 

dataset are different. To create a receptive field, a two-dimensional matrix is created and row and 

column values in the two-dimensional matrix are normalized to the range [0,1]. To observe the 

neural network output that is tested with values that are outside of the range [0,1], another 
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receptive field in the range [-1.5,1.5] is created by shifting and scaling the receptive field in the 

range [0,1]. The accuracy rates can be seen in Table 2. 

Table 2: Test results from two spiral experiment 

Formula Accuracy (Epoch: 50) 

S.1 52.3% 

S.2 97.1% 

S.3 92.9% 

Standard 71.1% 

As it can be seen from Table 2, S.2 achieved the best accuracy rates while the S.1 could only 

reach 54.1% accuracy. S.3 has achieved a high accuracy rate, but not as good as the S.2. On the 

other hand, the standard neural network could reach only 59.3% accuracy. It was expected that 

the formula S.3 achieves the best accuracy. Each sample that is put into the calculation in SNN 

with S.3 disrupts the amplitude of sine functions in the neural network. Therefore, the model is 

supposed to be more robust to various inputs and generalize better after it has been trained. By 

plotting the receptive field, the behavior of neural networks is going to be easier to be 

understood. 

Figure 8 demonstrates the receptive field of the neural network using S.1. The model can 

create non-linear distributions, but the distributions are wrong. The reason behind it is that the 

first formula does not have the multiplier in front of sine. Therefore, each sine function in the 

model has a fixed radius from the unit circle perspective. A fixed radius restricts the model to 

adjust the amplitude of sine to adapt to necessary conditions. 

  

Figure 7. Receptive field of sinusoidal neural network using S.1 

Figure 9 shows the receptive field of the neural network using S.2. The receptive field of the 

model of this formula gives understandable outputs. It clearly divided the space as it was trained. 

Even though it has the best accuracy rates in the test results, its receptive field shows that its 

generalization capacity for values that are out of the range of training samples is low, because the 

values which are not included in samples are almost randomly divided. The deeper investigation 

of these functions is a further research topic for this subject. 

Figure 10 demonstrates the receptive field of neural network S.3. This model has not achieved 

the best results by means of accuracy. But its generalization capacity for values that are out of 

the range of training samples is better than for the model with the S.2. As can be seen from 

Figure 10, the model divided the field clearer. On the other hand, the enlarged and shifted 

receptive field on the right side of Figure 10 shows that the neural network has learned to repeat 

the pattern it learned for minus values as well. The model perfectly reflects the division that it 

learned also for minus values. 
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Figure 8. Receptive field of sinusoidal neural network using S.2 

 

  

Figure 9. Receptive field of sinusoidal neural network using S.3 

 

  

Figure 10. Receptive field of standard neural network 

Figure 11 shows the receptive field of the standard neural network. The reason behind the low 

accuracy for the neural network can be easily understood from this receptive field demonstration. 

The model could not divide the field properly. This is due to the fact that the number of epochs 

for training the model is not sufficient. It just found a dividing line that reaches to the highest 

accuracy rate that it could. 

5 Conclusion 

During the research, biological neurons are reviewed to model a node operation for an artificial 

neuron. It has been seen that biological neurons are transmitting the information with signals 
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behaving as periodic functions. According to this outcome, the use of periodic functions in 

artificial neural networks (ANN) is reviewed. It is found that periodic functions are used as 

activation functions and as node operations. The ones which use sine as node operation are 

called Fourier Neural Network (FNN). Both FNN and ANN using sine as activation function 

have shown that the division of probabilistic space can be infinite with periodic functions. The 

effects of this phenomenon are experimented and proved in [9], [14]. The infinite number of 

divisions in probabilistic space lets the ANN train much faster than standard ANN.  

The behavior of sine function in node operation is also demonstrated using unit circles, and 

new node operations that use sine are redesigned. Therefore, the behavior and features of sine 

node operation are understood. After formulas were defined, experiments were conducted to see 

practical results. There were no improvement in the experiment with the MNIST [20] dataset, 

which may be because the MNIST dataset is a dataset that is almost linearly separable. On the 

other hand, the experiment that was made with two spiral dataset has shown the success of 

sinusoidal neural networks (SNN). While S.2 has achieved the highest accuracy, S.3 showed an 

intriguing generalization capacity. While the variations of S.1 and S.2 are applied in previous 

researches, S.3 has been applied firstly in this research. The results which are obtained in the 

experiments are promising. Furthermore, a thorough comparison of the achieved results against 

ReLU, leaky ReLU and parameterized ReLU should also be investigated.  

In future work, several studies on SNNs are planned to be conducted:  

 A deeper investigation of SNNs with S.2 and S.3 to find methods for initial weights, which 

has become the biggest issue in the experiments that are applied in this research.  

 Application of SNNs on more complex datasets and problem domains to assess the capacity 

of SNNs further. 

 The use of SNNs in generative adversarial networks as the fully connected layers. 
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