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Abstract. This article reports on the Design Science engineering cycle for 

implementing a modeling method to support model-driven, process-centric API 

management. The BPMN standard was hereby enriched on semantic, syntactic 

and tool levels in order to provide a viable solution for integrating API requests 

with diagrammatic business process models in order to facilitate the 

documentation or testing of REST API calls directly in a modeling 

environment. The method can be implemented by stakeholders that need to map 

and manage their API ecosystem, thus gaining more API management agility 

and improving their software engineering productivity. By assimilating API 

ecosystem conceptualization in the modeling environment, the proposal differs 

from both RPA (which typically employs non-BPMN process diagramming 

e.g., in UIPath) and BPM Systems (which typically isolate all API-related 

semantics outside the process modeling language to keep the diagrammatic 

representation standard-compliant).  

Keywords: BPMN, API Modeling, Model-Driven Software Engineering, API 

Ecosystem Management, REST API Semantics. 

1 Introduction 

This article reports on Design Science work aiming to engineer a modeling method that 

establishes a functional bridge between the BPMN standard and executable REST APIs. As a 

functional artifact, the result takes the form of an extension for the open source Bee-Up tool – a 

multi-language modeling tool supporting BPMN, UML, ER, EPC and other notations [1], [2] 

that is also open to extensions and experimentation. 

In order for a business actor to maintain a strong market position, it is of paramount 

importance to have maximum efficiency in its internal business processes and the capability to 

easily adapt to ecosystem changes. The expansion of organizations brought new challenges 

regarding business operations management, optimization of strategic business decisions and the 

improvement of business workflows. Consequently, business ecosystems are being 

complemented by API ecosystems for which business processes act as orchestrations [3]. 
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However, there is a lack of modeling methods for managing those API ecosystems and for 

mapping them on business process models that may already exist in an organization’s process 

repository. 

The motivation for this project derives from larger work investigating possibilities to bridge 

the “design-time vs. run-time” gap in terms of API management, in a Business Process 

Management context. Traditional BPM systems (e.g., Camunda [4]) prefer to decouple the API 

ecosystem from the modeling environment – i.e., to keep the modeling method standard-

compliant (e.g., BPMN-based) and have all API-related details as external “task workers”. The 

alternative approach proposed in this article is to capture a conceptualization of the API 

ecosystem in the modeling environment, thus allowing its diagrammatic configurations before 

any actual data must be passed to run-time APIs. An agile metamodeling approach based on the 

Agile Modeling Method Engineering (AMME) [5] methodology is employed to tailor an open 

source BPMN implementation for the aforementioned purpose. 

The remainder of the article is structured as follows: Section 2 discusses the problem 

statement and presents a solution overview. Section 3 provides a short review of relevant related 

works, while Section 4 gives detailed information about the research and engineering methods 

hereby employed. Section 5 discusses the design of the modeling tool and its implementation, 

while Section 6 presents the artifact evaluation and assesses the key criteria taken into account 

for validating the modeling method. Section 7 concludes the article. 

2 Problem Statement and Solution Overview 

In order to achieve efficiency and adaptability in complex business scenarios that rely on API 

ecosystems, traditional companies have to evolve in the direction of ambidextrous organizations 

[6]. Business process modeling languages and methods, alongside process automation techniques 

support this kind of enterprise evolution. Some of the popular solutions for automating processes 

are Robotic Process Automation (RPA) [7], API-based automation, or a mix of those, as RPA 

platforms are gradually incorporating back-end automation features. 

Currently, despite the existence of a variety of languages for API descriptions, such as RAML 

[8] or API Blueprint [9], there is a lack of domain-specific conceptual modeling methods for 

designing API calls for both analysis and execution purposes, thus ensuring a bridging between 

the design-time and run-time aspects while enabling a semantic coupling between BPMN 

process models [10] and diagrammatic API models. The need for such tooling was derived from 

the success of the Swagger interface definition language, typically employed as API 

documentation [11]. The core semantics captured in a Swagger documentation (i.e., of an HTTP 

request configuration) are assimilated in the hereby proposal in a business process modeling 

environment by applying the agile customization made possible by the AMME methodology. 

The benefits are the ability to integrate the proposed extension in already existing BPMN 

analysis mechanisms (e.g., model queries, path analysis reports), the possibility to implement 

API-specific mechanisms (also via model queries over the modeled API ecosystem) and at the 

same time to run and test API calls directly from the business process modeling environment. 

The method’s prototype also suggests the possibility of designing a model-driven API 

management system that could be integrated with more diverse business modeling languages [1]. 

By doing so, process modeling can evolve from diagrammatic design of business processes to 

automating, streamlining and executing processes based on BPMN extended with aspects of the 

run-time environment – something that is currently decoupled from the process modeling 

environment: in RPA tools like UiPath [12] the process diagramming component ignores the 

existence of BPMN, whereas in BPMN-driven platforms like Camunda [4] the run-time API 

aspects are not captured on a diagrammatic level since they are out of BPMN’s scope (limited 

to providing “Data store” and “Data objects” symbols with no executable granularity). 
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2.1 Solution Overview and Use Cases 

The proposed treatment to the aforementioned Design Problem is a modeling method that 

extends the BPMN standard with new modeling classes, semantics, syntax and functionality for 

describing and executing API requests. For prototyping we used the open-source BPMN 

implementation made available by the Bee-Up Modeling Toolkit [2], extended for this work's 

purpose with the help of the ADOxx metamodeling environment [13].  

The proposed modeling method includes both an API modeling language specification and a 

functional prototype for launching API requests to real-world REST services from BPMN 

models. The scripts that implement execution functionalities are built upon the novel modeling 

language constructs in order to ensure full integration between the components of the modeling 

method and the external environment, with the help of ADOxx interoperability features (its 

proprietary ADOScript language [14] interoperating with a PHP-based HTTP client). 

Figure 1 (code snippets not intended to be readable) provides an overview of the solution’s 

building blocks and processing flow. The process model elements (BPMN tasks) can be 

semantically linked to an API model comprising all the API calls available in an API ecosystem. 

 

Figure 1. Solution overview 
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The API ecosystem can have two statuses: 

• As-Is, if it is an existing ecosystem for which the modeling tool becomes a 

testing/orchestration tool; 

• To-Be, if it is a future ecosystem for which the modeling tool becomes a design and analysis 

tool. 

The elements from the API diagram are extensions of the BPMN, both semantically and 

syntactically, that can be parsed in order to compose the API calls and to execute them. This 

capability enhances the model-driven software engineering facet of our project, because the 

diagrammatic model acts as an execution driver, modifying its execution behavior in correlation 

with the modeling language elements in designing an API call. 

The proposed extensions manifest on multiple layers of a modeling method: 

1. On graphical level, the BPMN toolbar provides new symbols for the added concepts needed 

to model API calls; 

2. On conceptual level, those symbols imply new concepts added to the BPMN metamodel, as 

detailed in Section 5.1, isolated in a separate type of diagram that can be connected to 

BPMN elements; 

3. On syntactic level, domain, range and cardinality restrictions were introduced through the 

built-in settings of the ADOxx platform; 

4. On semantic level, the new concepts were enriched with REST and HTTP-specific 

properties (e.g., the HTTP verb, query strings). 

On functional level, mechanisms for triggering HTTP calls that are configured according to 

the diagrammatic designs are implemented. 

 

Figure 2. Stakeholders and supported use cases 

The relevant use cases reflected in Figure 2 are: 

• For a business process modeler: the ability to design an API ecosystem, mapping it to 

BPMN processes and detailing AP request configurations; 
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• For a project management role: the ability to perform ADOxx’s model queries over the 

combination of BPMN-API models;  

• For a process automation expert: the ability to configure and test run-time API calls in the 

BPMN modeling environment. 

3 Related Works 

Swagger [11] is an interface description language for APIs that inspired this research in the sense 

that Swagger-style API descriptions are hereby assimilated in an extended BPMN modeling 

language, thus acting as both a conceptual and functional bridge between business process 

models and API-based execution environments. In its original form, Swagger does not have a 

conceptual modeling method as it is strictly employed for parsing or documenting API 

descriptions for the clients of those APIs. 

Coming from the side of business process engines, the integration between process 

descriptions and executable HTTP request configurations has been traditionally achieved in two 

ways: by completely ignoring BPMN as a process description language (in RPA tools such as 

UIPath [12]) or by completely decoupling API call semantics from the modeling language (e.g., 

in BPM systems such as Camunda [4]). 

Goldstein et al. presented in [15] how MEMO OrgML can be used as a business process 

modeling language which could extend the capabilities of a modeling language from the design 

phase to the runtime phase of process execution. In our case, one of the API modeling method’s 

purposes was to create a bridge between the design time and the run time components of an API 

request inside a process diagram and to enact it at runtime. 

As authors of [16] state, there is an increasing need for more domain-specific targeted 

modeling languages in the current software engineering world – the proposed BPMN+API 

hybrid modeling method provides a strong base for designing and executing HTTP-based Web 

services (with a current focus on REST APIs, although extensions are considered for other 

interoperability models). In [17], authors present the implementation of the API2MoL engine, 

which is a rule-based language that allows mapping definitions between Java APIs’ 

specifications and the metamodel that is used to represent them. This way, API objects can be 

converted into models and models can also be converted into API objects, showcasing a 

bidirectional model-driven engineering approach. In comparison, our work did not aim to 

generate new API objects from models, but rather to provide a modeling tool that can be used in 

order to streamline, test and orchestrate web APIs’ execution in business processes. In [18] 

authors describe a tool for managing cloud service ecosystems using the Open Cloud Computing 

Interface, strengthened by model-driven engineering. In our case, we focused on API ecosystem 

management that includes services mostly used for retrieving or sending data, while cloud 

services are mostly used for acquiring superior computing power or storage space. 

The work presented in [19] focuses on modeling RESTful conversations, abstracting the 

structure of HTTP interactions. This is accomplished by extending the notation that is used in 

BPMN choreography diagrams. The main purpose in [19] is to represent the interaction 

sequences that appear in a RESTful API conversation, while our work focuses on linking 

RESTful APIs to the business processes in which they can be employed. After the linking part, 

our modeling tool offers the possibility to launch the requests from the modeling environment. 

The project presented in [20] showcases the definition of a microservice composition approach 

that enables the creation of a composition in a BPMN model which improves engineering 

decisions’ analysis quality. Moreover, the referenced work presents how the created BPMN 

model for microservice implementation can be split into fragments that are executed through an 

event-based choreography form. 

The authors of [21] introduced RESTalk which is an extension to the BPMN choreography 

diagrams, that allows API developers to render more accurately the client-server interactions of a 

RESTful API in a diagrammatic form. This enrichment was proposed in order to increase 



6 

 

developers’ efficiency and facilitate better understanding of the API structure that needs to be 

implemented. 

The work done in [22] supports the introduction of a platform for defining cloud-specific 

workflows in BPMN business process engines. The BPMN specification was extended in order 

to support the orchestration of cloud-specific workflow activities and a new metamodel was 

proposed in order to map orchestration workflow elements onto extended BPMN elements. 

Unlike the referenced works, this article showcases the viability of the AMME methodology 

for enriching BPMN with aspects pertaining to REST API management and run-time. 

The work reported in [23] showcases MetaEdit+ which allows fast method prototyping to 

enhance domain-specific modeling agility, a goal that is also pursued by this article, but with the 

help of the Agile Modeling Method Engineering framework, promoted in OMiLAB’s ecosystem 

[24] for conceptualization and operationalization of conceptual modeling methods. 

4 Research and Engineering Method 

The Design Science research methodology [25] was applied as a research frame for developing 

the modeling method starting from requirements captured in the use cases presented in Figure 2. 

AMME [26] was the engineering methodology. 

4.1 Research Method 

A typical Design Science development cycle is structured in 6 main stages: Problem 

identification and motivation, Objectives statement, Design and development, Demonstration, 

Evaluation, and Communication [27], conducting to the development of a usable artifact.  

• In the Problem identification and motivation phase we surveyed the state of the art literature, 

leading to the conclusion that an API domain-specific conceptual modeling method is 

missing in the API management and process automation environments, with a total 

decoupling between process modeling standards and API specifications. 

• In the Objectives statement step we set the requirements as suggested in Figure 2. 

• During the Design and development phase, we employed the AMME methodology, to be 

detailed in the next subsection, arriving at low technological readiness prototype.  

• In the Demonstration step, we tested the API modeling method on several web APIs varying 

in terms of used parameters, types of keys or headers, in order to show that the treatment has 

a broad level of application. 

• During the Evaluation phase, the treatment was compared to a previous model-driven 

semantic orchestrator that only read API settings from BPMN annotations, presented in an 

earlier publication [28]. It was a typical case of comparing a model-driven software 

engineering artifact (the current one) to a model-aware software engineering artifact, with 

“model-awareness” referring to when run-time components only query model contents, 

rather than being generated from model contents [29]; the version reported in this article 

produces full HTTP request scripts in PHP from API-specific diagrammatic contents. 

• The Communication phase consists in disseminating the result and the article at hand is one 

step in this direction. 

4.2 Engineering Method 

In order to develop the API modeling method in a way that is coupled with the BPMN 2.0 

modeling language, we used the AMME development model. As [5] states, a modeling method 

comprises a modeling language (syntax, semantics and notation), a modeling procedure and 

functional mechanisms. AMME [26] is a modeling tool development framework which applies 

Agile principles [30] to the practice of modeling method engineering. Since it is iterative and 

aims to produce an artifact tailored for a limited context, it can act as the engineering cycle 
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implied by the Design Science methodology. The design decision and implementation details 

derived from applying AMME for the purpose of this research will be detailed in the subsequent 

sections. 

5 Design Decisions and Implementation Details 

5.1 Conceptual Design 

Bork et al. reported in [31] several approaches to specifying a metamodel – in this article we use 

a simplified UML class diagram. Figure 3 depicts the BPMN metamodel enriched with the 

language constructs from the API modeling tool. It contains 3 core classes – APIBase, Route, 

RequestConfiguration and 2 relation classes – RouteAssociation and Method. The APIBase, 

Route and RequestConfiguration classes are subclasses of the APINode class, which has only a 

grouping scope in the metamodel. 

 

Figure 3. The BPMN metamodel, based on [32] and enriched with API ecosystem concepts 

The APIBase class stores information about the API’s basic elements like the URL or the 

access key. The Route class is used to indicate the route chosen in the API request, while the 

RequestConfiguration class stores request’s parameters in order to perform the desired action. 

This class is also referenced by a specific task from the business process model, which must be 

executed using a certain API. Alongside this, the RequestConfiguration class also offers the 
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possibility to launch into execution an API request using its embedded functionalities that were 

programmatically developed during the course of this research project. 

The relation classes: RouteAssociation and Method are used to link the main classes and are 

expressed here as associations, considering the fact that the BPMN relation classes are also not 

represented to keep the metamodel simple. The RouteAssociation class has simply a 

diagrammatic role, informing the modeler which routes are available for a specific API (the basic 

elements of the API are represented in the APIBase class). The Method class is used to link a 

Route to a RequestConfiguration and it is also used to define the HTTP method of the request 

(GET, POST, PUT, PATCH, DELETE). 

Some key attributes have been highlighted: the RequestConfigurationReference attribute, 

which was added to the Task class from the BPMN language in order to make links between 

tasks and their API request implementations through the RequestConfiguration class of the API 

modeling tool’s language class structure. Also, the attributes from the RequestConfiguration 

class are the ones that provide the request’s functional specificity by allowing the user to choose 

the type of headers, add request parameters, query body, if needed, and link the 

RequestConfiguration through the suite of request execution scripts using the 

ExecuteAPIRequest Programcall type attribute. 

5.2 Syntactic Design 

According to [33] any graphical representation of a modeling language “must effectively 

communicate with business stakeholders” and “support design and problem solving by software 

engineers”. In other words, at least some of the symbols used in a new modeling method 

prototype should be strongly correlated with the domain-specificity of the application area. 

Figure 4 shows the domain-specific graphical symbols of the modeling language classes. The 

APIBase has a database-related symbol because its purpose is to store some of the elements that 

form the base target for any API request, such as the URL or the API key. The HTTP Route class 

is represented by a GPS because it must communicate to the modeler the possibility to add one 

or more endpoints of an API in the diagram. The RequestConfiguration class is the one that 

effectively launches the request so it must symbolize the connection to a web service. The 

RouteAssociation class has a graphical role on the diagram helping the modeler to differentiate 

between different implementations of an API, using the same base and different routes. The 

HTTP Method class has the shape of an arrow because it can symbolize the transfer of a request 

through an REST method. 

 

Figure 4. The graphical notations of the modeling tool 

Just as important as the visual domain-specificity is the interactive nature of graphical 

symbols, with hotspots that trigger inter-model semantic links (from BPMN elements to API 

elements) or execution of external components (HTTP requests to the modeled APIs). These are 
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the key UI-level bridge between the design-time and run-time of proposed models, suggested in 

Figure 5. Execution results are also displayed directly in the modeling environment. 

 

Figure 5. Visual cues acting as interactive triggers 

5.3 Functional Components 

The executable bridge between the modeling environment and any existing APIs relies on 

scripting mechanisms created with a mix of ADOxx’s internal programming language 

(ADOScript) and external HTTP management (PHP-based, as it is easier to handle JSON 

payloads than handling ADOxx’s built-in data structures). 

The main algorithms that employ the run-time functionalities of the API modeling method are 

the diagram path parsing algorithm (in ADOScript) and the API request execution algorithm (in 

PHP). They interoperate in order to achieve the goal of supporting model-driven process 

automation based on APIs. 

Consequently, API models work as controllers for API execution. They can be considered 

code generators because the PHP-based code handling HTTP requests is dynamically built from 

diagrammatic design. The RequestConfiguration concept works as an orchestrator. It sends to the 

model parsing algorithm the necessary data for parsing the path chosen by the modeler when 

clicking on the RequestConfiguration’s visual hotspot. After that, the request execution 

algorithm launches the API call based on the data pushed by the diagram path parsing algorithm. 

After the execution phase it sends the results back to the ADOxx environment. 

The diagram path parsing algorithm is divided into two main processes, while the API request 

launching algorithm follows a single process, as shown in Figure 6. 

On the left side of Figure 6, a flowchart shows actions that are executed by the subroutine that 

reconstructs the API diagram path necessary for executing a certain API request. After the 

modeler chooses a certain request implementation by clicking on its RequestConfiguration 

object, the algorithm collects all the objects that are needed to successfully launch the API call. 

The center of Figure 6 shows the subroutine gathering from the API diagram all the 

parameters such as API key, URL, request headers or query body that are used in order to launch 
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the API call. This algorithm parses the objects discovered in the diagram path reconstruction step 

and then gathers the needed attributes’ data from them.  

The path reconstructing sub-process and the data gathering sub-process can be regarded as the 

pillars of the model-driven facet employed in this project.  

 

Figure 6. Flowcharts describing the diagram path reconstruction (left), the model parsing and data 

gathering process (center) and the API request execution process (right) 

The following step is the launch of the API request by using the HTTP client. This process is 

performed after the API parameters are gathered and stored in a file that is accessible to the 

HTTP request launching script. 
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The right side of Figure 6 shows the code logic employed in the request execution step. By 

using a PHP-based HTTP client, the request parameters form the parameter gathering step are set 

and the request is executed. After that, the response is decoded and sent to the modeler directly 

in the modeling environment.  

5.4 Method Implementation 

In order to develop the API modeling tool and its related ecosystem of classes and functionalities 

we chose a multi-layer architecture that separates the core language constructs from the code of 

an API request launch.  

Figure 7 shows an API description diagram that was built using the modeling method (for a 

single API of an ecosystem; the simple grouping of multiple such elements in the same canvas 

acts as a containment relationship, separating ecosystems in different diagrams). The right side 

shows attributes of the RequestConfiguration class as seen by the process modeler. The 

PredefinedHeaders attribute is a tabular attribute that consists of a drop-down list from where the 

user can chose header types – e.g., Content-Type, in the PredefinedHeaderKey field, while the 

PredefinedHeaderValue field takes its data from another drop-down list which stores some 

header types such as application/json or application/graphql. We chose to offer these predefined 

headers and values because they are the most used while interacting with web services through 

APIs and this way we wanted to limit any possible spelling mistakes. The Headers attribute is a 

tabular attribute where the user can explicitly set other headers besides Content-Type and 

Accept, that might be used in specific API requests – e.g., the Authorization header that is 

needed for some web services that do not store the authentication key inside a request parameter 

but they get it from a request header. The Parameters attribute is another recordset attribute, used 

for specifying request parameters that usually act as GET parameters that get appended in a 

human readable format to the URL of the request. It has two fields: Parameter – where the user 

sets the parameter’s name and Value where the user sets each parameter’s value. The QueryBody 

attribute is of type string and it is used mostly for POST-type requests in which the user can 

explicitly set the whole body of an API query – e.g., querying a GraphQL [34] or SPARQL 

endpoint [35]. 

 

Figure 7. API Diagram built with the presented modeling tool (left) and machine-readable annotations 

of an HTTP Request Configuration (right) 
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The Execute API Request attribute is an execution trigger reflected visually as an interactive 

hotspot, launching the PHP component that will actually execute the API request and return the 

results in the modeling environment. 

Attributes can be visualized and set in the other classes similarly to the way they are here, 

through the built-in linking UI available in the original Bee-Up implementation.  

Figure 8 presents the user interface for creating a semantic link for a BPMN Task. 

The model-driven functionality turns diagrams into execution drivers, therefore we have a 

model-driven software engineering approach that is typically found in process automation, 

however without capturing the API ecosystem conceptualization in the modeling environment 

itself – e.g., UIPath stays away from BPMN entirely, whereas BPM platforms like Camunda 

keep BPMN standard-compliant while decoupling the API semantics completely from the 

modeling environment. 

 

Figure 8. Semantic linking between a BPMN Task and a RequestConfiguration 

Figure 9 shows the cycle that is executed every time an API request is launched.  

In the beginning, the modeler must design a model that contains the elements necessary for the 

API request(s) launch. When pressing the RequestConfiguration’s execution hotspot, a model-

parsing ADO script reconstructs the chosen diagram path and extracts the request-related 

information from the design-time model. This operation leads to the creation of model-generated 

code necessary for launching an API call. This code is then pushed to the PHP request launching 

script that uses a convenient HTTP client. After the response from the API is received, the same 

PHP script extracts the necessary data and  pushes it back into the modeling environment, where 

the modeler can confirm it, not unlike the way tools like Postman [36] are used for API test 

purposes – however, with the advantage that here it is done in a modeling environment that (a) 

acts as a diagrammatic repository of API descriptions; (b) maps those API descriptions on 

BPMN process tasks, potentially allowing a diagrammatic orchestration of managed APIs. 
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Figure 9. The model-driven API request execution cycle 

Figure 10 depicts a code sample from the AdoScript diagram parser that is used for gathering 

data from the model, employing the model-driven functionality. It displays a part of the attribute 

parsing and data gathering for the APIBase class. Later, the values of the attributes will be stored 

in a file that will be consumed by the PHP script in order to launch the API requests, as the 

presented algorithms show. 
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Figure 10. Gathering the attributes of the APIBase class in AdoScript 

5.5 Deployment Architecture 

Figure 11 shows the deployment diagram of all involved components: The BPMN modeling tool 

communicates with the API modeling tool in order to integrate the business process modeling 

phase and the API request modeling phase. The AdoScript script parses the diagram obtained by 

using the API modeling method and then launches into execution the PHP script that 

communicates with the web API through the HTTP client. 

 

Figure 11. Deployment diagram 
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6 Artifact Evaluation 

6.1 Quantitative Evaluation 

We conducted a series of performance evaluations, testing prototype capabilities with multiple 

Web APIs, where the request payload takes various forms (JSON, SPARQL queries). We also 

wanted to see how an artifact that follows the model-driven software development pattern 

compares to an orchestrator that was built following the model-aware development model 

described in [28]. 

Table 1 displays the execution time for some of the API requests that were integrated with the 

API modeling method. Considering the selected requests, the average execution time was around 

6.409 seconds. 

Table 1. The execution times of different web API requests 

API Request Request Description Execution Time (s) 

Currencylayer USDGBP 
Sending a JSON request to a currency exchange API, 

retrieving the USD-GBP rate 
6.333 

Currencylayer USDEUR 
Sending a JSON request to a currency exchange API, 

retrieving the USD-EUR rate 
6.396 

Currencylayer historical 

USDEUR 

Sending a JSON request to a currency exchange API, 

retrieving the USD-EUR rate from 01/01/2020 
6.708 

AlphaVantage AAPL 
Sending a JSON request to a stock exchange API, 

getting the AAPL daily quotes 
6.459 

AlphaVantage IBM 
Sending a JSON request to a stock exchange API, 

getting the IBM hourly quotes 
6.723 

RDF4J server request 1 
Sending a SPARQL request to an RDF server, getting 

the structure of a company  
6.209 

RDF4J server request 2 
Sending a SPARQL request to an RDF server, getting 

data about the employees of a company 
6.037 

 

Table 2 shows the comparison between the model-driven and the model-aware approach in 

terms of execution time. With the API modeling method, process modelers can choose which 

API request is sent to the execution engine at run-time. This functionality enables the model-

driven approach to have a higher grade of usability as the modeling environment becomes a 

request control panel, even if it might seem slightly slower than the model-aware approach. 

Table 2. Comparison between averages in the model-driven approach and the model-aware approach  

Method Execution Time  

API modeling method (model-driven software 

development) 
6.409 

Semantic orchestrator (model-aware software development) 6.396 

 

The system that was used for developing and testing both the API modeling tool and the 

semantic orchestrator is represented by a personal laptop that runs Windows 7 Professional 64-

bit and has an available RAM memory of 8GB. The processor type of the system is Intel Core i7-

47410HQ CPU 2.50Ghz.   

6.2 Semantic Coverage 

AQL Queries [37] already available in Bee-Up can now extend their scope over the metamodel 

extension, allowing to perform query-based analysis of the hybrid BPMN-API models. Below 

are two use case examples in this respect. 
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Example 1: Gather the linked RequestConfiguration of a certain BPMN task (the Gather 

exchange rates from API task from one of our BPMN models) 

AQL code: ({"Get exchange rates from API"}-->"RequestConfigurationReference"). 
Example 2: Get the name of the APIBase linked to a certain RequestConfiguration element 

(the RC live USDEUR RequestConfiguration element) 

AQL code: (({"RC live USDEUR"}<-"Method")<-"RouteAssociation"). 

Figure 12 displays the results of the AQL queries that can support the analysis of BPMN-API 

hybrid model by retrieving some common information assuming a complex model. 

 

Figure 12. AQL query examples 

6.3 Usability Evaluation 

A usability evaluation hereby reports on the number of clicks that a modeler has to perform in 

order to link the tasks from process model to their API implementations and to launch the needed 

API call, as seen in Table 3. 

Table 3. Modeling effort for linking APIs to processes and launching API requests 

Operation Number of Clicks Necessary 

Linking task to API implementation 10 

Launching the API request linked to a certain task (starting from 

the process model)  

3 

7 Conclusions 

This article reports on a new modeling method for model-driven API management which 

enriches the BPMN standard by adding new semantic elements, as well as functionality on 

prototype level. The proposed artifact couples design-time process modeling to run-time 

execution of requests based on models. In today’s software engineering world, model-driven 

approaches tend to get more traction as applications need to work in a frequently reconfigured 

ecosystem of APIs, and a model-driven treatment of this challenge is the idea advocated by this 

work. 

The modeling method created this way can be used for integrating API requests in traditional 

business processes but it also provides a good solution for API testing, automation or API 

ecosystem management. This way, BPM agility can be improved by a more transparent relation 

between design-time and run-time. 

In terms of limitations, the API diagrams developed with the presented modeling tool are 

limited to being linked to process diagrams made using the BPMN 2.0 standard in the ADOxx or 
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Bee-Up environments. An important step forward would be developing an API modeling tool 

that can be used also in other modeling environments such as Camunda or Bizagi [38].  

Moreover, the work presented in this article would greatly benefit from being integrated with a 

more varied pool of modeling standards, not being strictly limited to BPMN 2.0. 

Future work will also focus on expanding the proposed BPMN extension to cover multiple 

Web interoperability protocols – e.g., CoAP, MQTT, WebSocket, which, due to the status of 

standards of such protocols can enrich BPMN in ways that are highly reusable for software 

engineers. 
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