

Complex Systems Informatics and Modeling Quarterly (CSIMQ)

eISSN: 2255-9922

Published online by RTU Press, https://csimq-journals.rtu.lv

Article 95, Issue 16, September/October 2018, Pages 61–83

https://doi.org/10.7250/csimq.2018-16.04

Scalable Matching and Clustering of Entities with FAMER

Alieh Saeedi1,2,⋆ Markus Nentwig1, Eric Peukert1,2, and Erhard Rahm1,2

1Database Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
2Competence Center for Scalable Data Services and Solutions, Dresden/Leipzig, Germany

{saeedi, nentwig, peukert, rahm}@informatik.uni-leipzig.de

Abstract. Entity resolution identifies semantically equivalent entities, e.g.
describing the same product or customer. It is especially challenging
for Big Data applications where large volumes of data from many
sources have to be matched and integrated. We therefore introduce a
scalable entity resolution framework called FAMER (FAst Multi-source
Entity Resolution system) that is based on Apache Flink for distributed
execution and that can holistically match entities from multiple sources.
For the latter purpose, FAMER includes multiple clustering schemes
that group matching entities from different sources within clusters. In
addition to previously known clustering schemes FAMER includes new
approaches tailored to multi-source entity resolution. We perform a detailed
comparative evaluation of eight clustering schemes for different real-life and
synthetically generated datasets. The evaluation considers both the match
quality as well as the scalability for different numbers of machines and data
sizes.
Keywords: Clustering, Matching, Distributed processing, Multi-source.

1 Introduction

Entity resolution (ER) – also called deduplication, record linkage or object matching – is the task
of identifying records that refer to the same real-world entity, such as specific costumers, products
or publications. This problem is of key importance for improving data quality and for integrating
data from multiple sources. Numerous approaches for entity resolution have been developed and
investigated [1], [2]. They derive match decisions typically based on the combined similarity of
several attribute values and possibly on the contextual similarity of entities (for instance, two
publications may match if they have both highly similar titles and co-authors). To achieve high
efficiency for large datasets, one has to avoid comparing each entity to all other entities. This is
achieved by so-called blocking strategies [1] where only records within the same block (partition)
need to be compared with each other, e.g. only publications from the same year are considered.
⋆ Corresponding author
© 2018 Alieh Saeedi et al. This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0).
Reference: A. Saeedi, M. Nentwig, E. Peukert, and E. Rahm, “Scalable Matching and Clustering of Entities with
FAMER,” Complex Systems Informatics and Modeling Quarterly, CSIMQ, no. 16, pp. 61–83, 2018. Available:
https://doi.org/10.7250/csimq.2018-16.04
Additional information. Authors ORCID iD: A. Saeedi – https://orcid.org/0000-0002-1066-1959, M. Nentwig
– https://orcid.org/0000-0001-5268-3083, E. Peukert – https://orcid.org/0000-0002-0338-3364, and E. Rahm –
https://orcid.org/0000-0002-2665-1114. PII S225599221800095X. Received: 15 March 2018. Accepted: 15 October
2018. Available online: 31 October 2018.

Entity resolution can also be performed in parallel on multiple processors and computing nodes to
achieve additional performance improvements [3].
Most previous ER approaches compare pairs of entities and determine binary match mappings

consisting of all correspondences or links between two matching entities. This is a natural approach
when one has to integrate only a few data sources but it does not scale well since the number of
binary mappings grows quadratically with the number of sources. For instance, integrating data
from 200 sources would require the determination (and maintenance) of 19,900 mappings which is
not practically feasible with today’s ER tools. A better approach for integrating data from multiple
data sources is grouping all matching entities within clusters as it allows a more compact match
representation than with binary links [4]. It also simplifies the fusion of the matching entities
for data integration by combining and consolidating the attribute values of the different cluster
members. Furthermore, it allows an incremental integration of additional entities and data sources
by comparing them with the set of previously determined clusters.
In our research, we aim at scalable ER approaches for Big Data that are able to deal with

large data volumes and multiple data sources. We therefore have developed a new framework
called FAMER (FAst Multi-source Entity Resolution system) for multi-source entity resolution
that supports clustering matching entities and exploits both blocking and distributed (parallel)
processing. It is implemented on top of the distributed dataflow framework Apache Flink to achieve
a high scalability to large amounts of data andmanymachines. FAMER includesmultiple clustering
schemes to group matching entities; and the main goal of this article is to comparatively evaluate
the match quality and runtime performance of these schemes. The considered clustering schemes
require, as input, a so-called similarity graph containing all links between matching entities and try
to find additional links by considering indirect matches and to eliminate weaker links in favor
of more plausible ones. The clustering schemes include previously known clustering schemes
(connected components, center clustering, star clustering, merge clustering, correlation clustering)
as well as two newly developed approaches for multi-source entity resolution dubbed SplitMerge
(introduced in [5], [6]) and CLIP [7]. In total, we perform a detailed comparative evaluation of the
match quality and scalability of eight clustering schemes for different real-life and synthetically
generated datasets.
This article is an extended version of the conference publication [8]. Compared to [8], we

here provide a more detailed discussion of related work and add the description and comparative
evaluation of the SplitMerge and CLIP clustering schemes. The CLIP algorithm investigated here
is an optimized version of the initial approach of [7] with much better runtimes.
In the next section, we discuss related work on entity resolution and clustering. In Section 3, we

provide an overview about our FAMER framework. Section 4 describes the considered clustering
algorithms and their distributed implementation. In Section 5, we evaluate the match quality and
scalability of the approaches for different datasets. Section 6 summarizes our findings and discusses
future work.

2 Related Work

There is a huge amount of literature about ER and there are several books and surveys to provide an
overview about the main methods and tools, e.g. [1], [2], and [9]. The decision whether two entities
match is typically based on the combined similarity of several attribute values and possibly on the
contextual similarity of entities. In current systems, the combination of the similarity values for
deriving a match decision is either based on supervised classification models (learned from training
examples) or on manually determined match rules. To achieve high efficiency for large datasets,
one has to avoid comparing each entity to all other entities. This is made possible by utilizing
so-called blocking strategies [1], [10] and additional filter techniques tailored to specific similarity
or distance functions (e.g. the triangle inequality for metric-space distance functions) [11]. Further
performance improvements are achieved by performing ER in parallel on multiple processors and

62

computing nodes, e.g. on Hadoop platforms. Proposed approaches are primarily based on the use
of MapReduce, e.g. [3], [12], and [13]. Only some initial approaches consider the use of the
Apache Spark framework for distributed ER [14], [15]. FAMER utilizes Apache Flink which is
similar to Apache Spark and both frameworks improve on MapReduce due to a better utilization
of in-memory processing and better support for iterative algorithms as needed for clustering [16].
Most of previous ER algorithms try to find matches either in a single source or between two

sources only. For a single source, matching entities are typically grouped within disjoint clusters
such that any two entities in a cluster should match with each other and no entity should match with
entities of other clusters. For two sources, the match result is mostly a binary mapping consisting
of pairs of matching entities (also called match correspondences or links). Binary match mappings
may be postprocessed to determine clusters of matching entities, e.g. by calculating the transitive
closure of the correspondences (connected components) in the simplest case. In FAMER, we extend
this approach to more than two sources by first determining a similarity graph with binary match
links between entities and then determining clusters of matching entities within the similarity graph.
A similar use of similarity graphs has been considered in [17] and [18].
Hassanzadeh and colleagues [19] comparatively evaluated several clustering methods for

single-source ER. We implemented parallel versions based on Flink of the best-performing
approaches from this study and added them to FAMER, in particular, correlation clustering [20],
Center [19], Merge Center [19], and two versions of Star [21] clustering in addition to connected
components as a baseline approach. FAMER further includes two clustering algorithms specifically
proposed for multi-source entity resolution, SplitMerge [5] and CLIP [7], that will also be evaluated
in this article. Both approaches start with determining connected components, but post-process
the resulting clusters (components) to obtain better clusters. In SplitMerge, clusters can be split
if they contain entities with a low similarity to other cluster members; in a final merge phase
some clusters, e.g. singletons from the split phase, can be merged with other similar clusters. CLIP
considers different link types in a similarity graph and focuses on the use of so-called strong links
for clustering. It is optimized for duplicate-free sources and ensures that each cluster has at most
one entity per data source. CLIP can also be used to repair clusters determined by other cluster
schemes [7], but this will not be studied in this article.
The comparative evaluation of different clustering schemes, in this article, allows a detailed

analysis of their suitability for multi-source ER. For the first time, we here provide the comparison
of SplitMerge algorithm with other clustering schemes. In contrast to previous evaluations such
as in [19] we consider parallel implementations of the algorithms and also evaluate runtimes and
scalability for different data sizes.

3 FAMER Framework for Multi-Source Entity Resolution

Figure 1 illustrates the main components and processing steps of the FAMER framework for
distributed multi-source entity resolution. The components are similar to the ones in previous entity
resolution tools, but thus support more than two sources and are implemented in Apache Flink to
achieve a parallel execution for high scalability. The input of FAMER are thus multiple data sources
with the entities to be matched and clustered. The output is a collection of clusters where all entities
within a cluster match with each other and different clusters refer to different real-world objects. All
entities of a cluster are assumed to match with each other, so that a cluster of m entities represents
m · (m− 1)/2 match pairs.
In this article, we assume that the entities of the different sources are comparable, i.e. they belong

to the same entity type (e.g. persons, products cities, etc.) and have comparable attributes. We
further assume that all sources are duplicate-free so that we only have to find matching entities
between sources. This is based on the experience that data sources should first be preprocessed
and cleaned before data integration, in particular duplicates within data sources should first be

63

removed or fused before matching with other sources [22]. The final match clusters should thus be
source-consistent [7], i.e. they should contain at most one entity from each input data source. As a
result, the maximal size of source-consistent clusters is limited by the number of sources.
FAMER consists of twomain parts (Figure 1): generation of a similarity graph based on pairwise

matches, and clustering. The first component has several steps (blocking, pairwise comparison,
match classification), which can be customized according to a configuration input. We provide
more details on the different steps below. We also illustrate the workflow of our framework for the
person records in Table 1 that originate from four sources A, B, C and D and contain erroneous
attribute values as typical for real-world data. Entities with the same index are assumed to belong
to the same cluster, e.g. entities a3 from source A and b3 from source B. Table 1 groups already
the matching records referring to the same person.

Figure 1. Overview of the FAMER approach for multi-source entity resolution

In the first phase, we start with a blocking step to reduce the number of comparisons compared
to a naïve approach where each entity of a data source has to be compared against all entities
of any other source. FAMER supports different blocking techniques such as Standard Blocking
(SB) and Sorted Neighborhood as well as single- and multi-pass blocking [1]. For SB, which we
will use in our evaluation, entities are partitioned into blocks by a predefined blocking key (to
be provided in the configuration input) on attribute values such that only entities with the same
blocking key need to be compared with each other. For the 14 person records in Table 1, we assume
that the two initial letters of the surnames form the blocking key. Table 2 shows the resulting
blocking key values and blocks sharing the same key value. For this example, even though the
entities are not evenly distributed in blocks, blocking reduces the number of comparisons from 91
to only 66+1=67. Such heavily skewed block sizes can result in significant runtime problems in a
distributed implementation since the processing of large blocks can overload certain processing
nodes while others with smaller blocks are underutilized. In order to achieve load balancing,
FAMER supports the so-called Block Split method proposed in [12] where large blocks can be
processed in several processing nodes. On the other hand, blocking may lead to missing some
matches if similar entities are assigned to different blocks (e.g. entities with id c2 and d2 are not
paired with entities a2 and b2). Such missing matches may persist even during clustering and can
thus limit the achievable match quality.Multi-pass blocking can reduce this problem (at the expense
of more comparisons) by partitioning the entities according to multiple blocking keys.
After blocking, all entities of a block from any of the input data sources are pairwise compared

with each other. For each entity pair, we compute the similarity of their attribute values for the
attributes and similarity functions specified in the configuration input. Currently, FAMER supports
such attribute-based similarity computations for different string similarity metrics (e.g. q-gram,

64

Table 1. Sample person entities from evaluation dataset DS3.

Id Name Surname Suburb Post code SourceId
a0 Bertha Watkins Wilmington 28282 SrcA
b0 Bertha Watkins Wilmingtn 2822 SrcB
c0 Brtha Watkins Wilmington 28222 SrcC
d0 Bertha Watkens Winington 28223 SrcD
a1 Bernie Watkins Wilmsor 28572 SrcA
b1 Bernie Watkns Winstom 2787z SrcB
c1 Bernii Wakens Windsor 28571 SrcC
a2 ge0rge Walker Winston salem 271o6 SrcA
b2 Gerge Waker Winston salem 27106 SrcB
c2 George Alker Winstons 27106 SrcC
d2 Geoahge Alker Winston 271oo SrcD
a3 Gerald Waker Winston Salem 27707 SrcA
b3 Gera1d Walker Winston Salem 27707 SrcB
d4 Larry Walker salem 28090 SrcD

Table 2. Keys

Id Key
a0 wa
a1 wa
a2 wa
a3 wa
b0 wa
b1 wa
b2 wa
b3 wa
c0 wa
c1 wa
d0 wa
d4 wa
c2 al
d2 al

Jaro Winkler, edit distance) and domain-specific similarity functions, e.g. using distance between
geographical entities. These similarity values are used in the following match classification step
to decide about whether or not a pair of entities is assumed to match. The classification approach
is also specified in the configuration input, e.g. by match rules specifying the required minimal
similarity for the considered attributes. A future version of FAMER will also support supervised
match classification where training sets of matching and non-matching entity pairs are used to learn
a classification model, e.g. decision trees or support vector machine (SVM) models [23].
The output of match classification is the set of matching entity pairs (links) together with a

combined similarity value per link. This output is stored as a similarity graph where entities are
represented as vertices and match links as edges. Formally, a similarity graph SG= (V ,E) is a graph
in which vertices of V represent entities and edges of E are links betweenmatching entities. There is
no direct link between entities of the same source due to the assumption of duplicate-free sources.
Edges have a property for the similarity value (real number in the interval [0,1]) indicating the
degree of similarity.
The clustering step of FAMER aims at grouping together all matching vertices of the similarity

graph based on the link structure of the graph and possibly the similarity values. Clustering
algorithms typically try to group entities such that the similarity between entities within a cluster is
maximized while the similarity between entities of different clusters is minimized. Compared to the
similarity graph, the clustering algorithm can ideally add all missing matches (links) and remove
all wrong links. As indicated in Figure 1, FAMER currently includes eight clustering algorithms
that we describe and evaluate in the following sections. Two of them, SplitMerge and CLIP, require
additional configuration parameters.
We have also developed a tool to visually analyze the similarity graphs and clusters determined

by FAMER [24]. The tools support the interactive exploration of large graphs and cluster sets, e.g.
to analyze potential problems like unusually large, source-inconsistent or overlapping clusters.
Figure 2 illustrates the results of the described workflow for the sample entities of Table 1 and

standard blocking as shown in Table 2. The entities are compared pairwise within the blocks and
a rule-based match classification is applied resulting in the similarity graph shown in the middle
of Figure 2. Compared to the matches assumed in Table 1, the graph misses some links between
matching entities, e.g. between a1 and c1. Employing ER clustering algorithms, the final clustering
determines five clusters which aremeant to represent different persons. In fact, the resulting clusters
correspond to the ones shown in Table 1 so that even the entities a2, b2, c2, d2 from different blocks
are correctly grouped together (which is possible for SplitMerge clustering).

65

FAMER is implemented using Apache Flink and a new extension for graph analytics called
Gradoop [25], [26]. Hence, all match and clustering approaches can be executed in parallel on
Shared Nothing clusters of variable size. Gradoop supports an extended property graph model so
that we store the attribute values of entities as key value properties. Analogously, the similarity
values of matching entity pairs are represented as edge properties. For the implementation of
the parallel clustering schemes we also use the Gelly library of Flink supporting a so-called
vertix-centric programming of graph algorithms (see next section).

Figure 2. Applying FAMER to the data of Table 1.

4 Clustering Approaches
In this section, we present the eight clustering approaches for entity resolution and their parallel
implementation. As described in the previous section, all algorithms use as input a similarity graph
with entities from multiple data sources and similarity edges indicating the computed degree of
similarity. The clusters determined by the algorithms group a set of entities from different sources
that are assumed to represent the same real-world entity. In our implementation, especially for the
CLIP algorithm, we also include the similarity links between cluster members from the originating
similarity graph. Hence a cluster Ci is represented by a cluster graph Ci =(Vi,Ei) with the clustered
entities in Vi and intra-cluster similarity links in Ei. The SplitMerge algorithm also determines a
so-called cluster representative for each cluster that is used to determine the similarity between
clusters to decide about whether clusters should be merged.
The parallel implementations are based on a vertex-centric programming model, also known as

‘think like a vertex’, to iteratively execute a user-defined program in parallel over all vertices of
a graph. In particular, we use the two-step Scatter-Gather model of Gelly that breaks up vertex
programming into two functions. In the Scatter step, a value is distributed to all vertex neighbors,
and in the Gather step the inputs from the neighbors are collected to update the state of a vertex.
The computation proceeds in synchronized iteration steps, called supersteps. Each scatter and each
gather execution is performed in a different superstep. Supersteps are executed synchronously, so
that messages sent during one superstep are guaranteed to be delivered in the beginning of the
next superstep [27]. The vertex functions are executed by a configurable number of worker nodes
among which the graph data is partitioned, e.g. according to a hash or range partitioning on the
vertex ids. We will explain the vertex-centric implementation in detail for one of the clustering
schemes (Center); the other implementations follow similar approaches.

4.1 Connected Components
The similarity graph contains one or more connected components, i.e. subgraphs in which any two
vertices are connected to each other and where there is no connection to other components. In the

66

similarity graph of Figure 2, there are two connected components: a small one with the two entities
c2 and d2 and a bigger one with all other entities. Having the input similarity graph, the connected
components are easy to determine in a vertix-centric way by letting every vertex iteratively add all
its direct neighbors to its cluster. The approach is therefore easy to implement with Scatter-Gather
(as shown in [27]). In the evaluation, we use this approach as a baseline for the comparison with
other clustering schemes. It is expected to find additional matches (and thus improving recall) by
grouping indirectly matching entities within clusters (components). On the other hand, it may lead
to poor precision since indirect matches may not be similar enough to really represent the same
real-word object.

4.2 Center Clustering

In contrast to connected components, the Center clustering algorithm [28] utilizes the similarity
values (weights) of the edges in the similarity graph. In the sequential algorithm, edges are first
sorted based on these weights in descending order and put in a queue. Edges are then removed
from the queue and processed one by one. For each edge e(vi,vj), if both vi and vj are unassigned
to any cluster, one of them will be center and the other will belong to the cluster of that center. If
one of them is a center and the other is unassigned, the unassigned vertex will belong to the cluster
of the center vertex. If both vertices are centers or both of them are non-centers, or one of them is
non-center and the other is unassigned, that edge is ignored.

Algorithm 1: Parallel Center
Input : SG= (V ,E)

1 assignVertexPriorities(V)
/* priority according to a random permutation of vertices */

2 Center ← ∅
3 for vi ∈ V in Parallel do
4 repeat
5 vnn ← argmax

j
(e(vi,vj))

6 if (vnn ∈ Center) then
7 vi.setClusterId(nn)
8 V← V−{vi}
9 else if (vnn /∈V) then
10 E← E−{e(vi,vnn)}
11 else
12 vk ← argmax

j
(e(vnn,vj))

13 if ((i = k ∧ i > nn) ∨ (vnn = Null)) then
14 Center ← Center ∪ {vi}
15 vi.setClusterId(i)
16 V←V−{vi}

17 until (vi ∈ V)

We propose and implemented a parallel version of the Center algorithm (see Algorithm 1). In
each round of the algorithm for all unassigned vertices, the outgoing edge with the highest weight
must be found. The vertices on both sides of this edge are then processed. If one of them is center,
the other will belong to the cluster of that vertex (lines 6–8). If one of them is assigned to another
cluster (line 9), i.e, both vertices belong to different clusters, the edge between these two vertices
is removed (line 10). If both vertices are unassigned and the edge between them is for both the
outgoing edge with the highest weight (line 13, i = k), then one of them is assumed as center

67

(line 14) and the other will belong to the same cluster in the next round. For selecting the center
in this case we make use of initially assigned (line 1) vertex priorities as done in the sequential
algorithm. Hence, the vertex with higher priority is considered as a center (line 16, i > nn). If a
vertex is not connected to any other vertexes (line 13, vnn = Null), it is a singleton. The algorithm
iterates until all vertices are assigned to a cluster (line 17).

Algorithm2: Parallel Center with Scatter-Gather
Input : SG = (V,E)

1 Algorithm Center
2 assignVertexPriorities(V)

/* set priority according to a
random permutation of vertices */

3 for (vi ∈ V) do
4 vi.K ← 1
5 end
6 repeat
7 Phase1: Scatter1 (Vertex)
8 Gather1 (Vertex, MessageIterator)

Phase2: Scatter2 (Vertex)
9 Gather2 (Vertex, MessageIterator)
10 until (V ̸= {})
11 Procedure Scatter1 (Vertex v)
12 for (e ∈ getOutEdges()) do
13 msg.Src← v.getId()
14 msg.Weight← e.getWeight()
15 sendMessageTo(edge.target(),msg)

16 end
17 Procedure Gather1 (Vertex v, MessageIterator

messages)
18 Array ← messages.Sort()

/* Messages are sorted based on
their weights descendingly */

19 v.NN ← Array[v.K].getSrc()

20 Procedure Scatter2 (Vertex v)
21 msg.Src← v.getId()
22 msg.NN ← v.getNN()
23 msg.Priority ← v.getPriority()
24 for (e ∈ getOutEdges()) do
25 msg.Weight← e.getWeight()
26 sendMessageTo(edge.target(),msg)

27 end
28 Procedure Gather2 (Vertex v, MessageIterator

messages)
29 Array ← messages.Sort()

/* sorted based on weights
descendingly */

30 for (i : v.K → Array.Size()) do
31 m← Array[i]
32 if (m.getSrc().isCenter()) then
33 v.ClustereId← m.getId()
34 v.assigned← true
35 break

36 end
37 else if (m.getSrc().isAssigned()) then
38 v.K ++
39 end
40 else if (v.NN= Null ∨ (v.NN = m.getSrc() ∧

v.Priority > m.getPriority())) then
41 v.ClustereId← m.getSrc()
42 v.center ← true
43 v.assigned← true
44 break

45 end
46 end

We implemented parallel Center using the Scatter-Gather model (see Algorithm 2). The
algorithm applies two phases that are iteratively executed for all vertices. Phase 1 (Scatter1,
Gather1) finds for each vertex vi its neighboring vertex with the currently highest edge weight,
and phase 2 (Scatter2, Gather2) processes the status of the found vertex and assigns vi to an
existing cluster or considers it as a center. Again, we initially assign a priority per vertex (line 3).
In phase 1, for each vertex vi the neighbor with the K-highest edge weight (nearest neighbor NN)
is found (lines 13–21). K is a helper variable. It helps to prevent that already assigned vertices are
chosen again as neighbors. It is attached to each vertex and initialized with 1 (lines 5–7). It will
be incremented in phase 2 when a vertex neighbor has been assigned to a cluster (lines 39–41).
In phase 2, all neighbors of a vertex vi are sorted and processed in descending order of the edge
weights (for the edges to vi) (lines 32–38). Then vertex vi is set as a center similar to Algorithm 1
(lines 42–47).

68

4.3 Merge Center

TheMerge Center clustering algorithm [28] is a modified version of Center. In contrast to Center, it
merges two clusters if a vertex in one cluster is similar to the center of another cluster. Our parallel
implementation for Merge Center is very similar to parallel Center but applies an extra iteration
for merging clusters. This iteration is initiated right after all vertices are assigned to a cluster. The
merge processing is repeated until there are no further cluster changes.

4.4 Star Clustering

The Star clustering algorithm [21] initially computes the degree for each vertex of the similarity
graph. Then in each iteration, the unassigned vertex with the highest degree becomes center and
all its direct neighbors are assigned to its cluster. The algorithm terminates when all vertices are
assigned to a cluster. In contrast to all other clustering approaches, Star clustering can result in
overlapping clusters. As a consequence, it introduces the need of a post-processing to select the
best cluster for entities that have been assigned to several clusters.
Our parallel version of the Star algorithm is described in Algorithm 3. Initially, the degree of all

vertices is computed and, if the degree of a vertex is greater than the degree of all its neighbors, that
vertex becomes a center (lines 4–7). If the degree of two adjacent vertices is equal, the one with
higher priority is assumed as a center. Similar to the previous parallel algorithms, vertex priority is
initially determined by generating a random permutation of vertices (line 1). Then each center and
all its neighbors are considered as a cluster. (lines 8–12). The Scatter-Gather version of Algorithm
3 uses three phases. In the first phase the degree of each vertex is computed. In the second phase,
centers are selected, and in the final phase, clusters are grown around the centers.

Algorithm 3: Parallel Star
Input : SG= (V ,E)

1 V← {v1, ..., vn}
/* A random permutation of vertices */

2 Center ← {}
3 repeat
4 for (vi ∈ V) in Parallel do
5 vmax ← argmax

vj∈{vj |e(vi,vj)∈E}∪{vi}
(computeDegree(vj)))

6 if (vi = vmax) then
7 Center ← Center ∪ {v}

8 for (vi ∈ V) in Parallel do
9 for (e(vi, vj) ∈ E) do
10 if (vj ∈ Center) then
11 vi.addClusterId(vj .getId())
12 V← V−{vi}

13 until (V̸= {})

We use two methods for computing the degree of vertices resulting into algorithms Star-1 and
Star-2. For Star-1, we count the number of outgoing edges of a vertex, while Star-2 is based on the
average similarity degrees of the outgoing edges of a vertex.

4.5 CCPivot Correlation Clustering

The original correlation clustering approach [29] uses a graph with positive and negative edge
weights to indicate whether two vertices are similar (positive edge weight) or dissimilar (negative

69

edge weight). The goal is to find a clustering that either maximizes agreements (sum of positive
edge weights within a cluster plus the absolute value of the sum of negative edge weights between
clusters) or minimizes disagreements (absolute value of the sum of negative edge weights within a
cluster plus the sum of positive edge weights across clusters). Gionis et al. propose an approximate
and iterative solution for this optimization problem [30] that randomly selects an unassigned vertex
as a cluster center in each round. Then all unassigned neighbors of the selected center are added to
the cluster and marked as assigned. The algorithm terminates when there is no unassigned vertexes
left.
This simple algorithm suffers from too many rounds making it unsuitable for very large graphs.

Some studies therefore proposed parallel solutions [20], [31] that select multiple centers in each
round. They also address the newly introduced concurrency problem to avoid that a vertex is
assigned to more than one center at a time. We implemented the parallel pivot approach of [20],
called CCPivot, since it fits well the Scatter-Gather paradigm. In each round of this algorithm,
several vertices are considered as active nodes, i.e. as candidates for becoming a cluster center
(or pivot). In the next step, active nodes that are adjacent to each other are removed from the set
of active nodes; the remaining vertices become centers. Then adjacent vertices of each center are
assigned to that center and form a cluster. If one vertex is adjacent of more than one center at the
same time, it will belong to the one with higher priority. As in the other algorithms, the vertex
priorities are determined in a preprocessing phase.
Our Scatter-Gather implementation of this algorithm uses three Scatter-Gather phases: one for

computing the current maximum degree of the graph, one for selecting active nodes and applying
the concurrency-aware rule to select final centers, and one for growing clusters around centers.

4.6 SplitMerge Clustering

The SplitMerge approach proposed in [5] is more general than the other clustering schemes as it
can deal with entities of different semantic types as well as dirty input sources and links, e. g.with
duplicates in sources. Furthermore, SplitMerge can compute additional links between entities
based on a similarity function provided within a configuration parameter. Further parameters are
similarity thresholds for the split and merge phases and a blocking function for the merge phase.
Algorithm 4 shows the pseudo-code of the SplitMerge approach consisting of three main phases:

(1) determining initial clusters by applying connected components and making the components
source-consistent, (2) splitting clusters to ensure a high intra-cluster similarity and (3) merging
similar clusters. In contrast to [5], we have omitted the preprocessing phase since we only consider
entities of a single type and duplicate-free sources in this study. The application of SplitMerge to the
similarity graph from Figure 2 is illustrated in Figure 3. More details on the Flink implementation
of SplitMerge are described in [6].

Initial Clustering

Connected
components

V={1,2,3,4,5,6,7}
E={{1,2},{1,3},{1,4},
{5,6},{6,7}}
Types T={ t1, t2, -}
Properties: label
Sources S={A,B,C,D}

G = (V, E) SG = (V, E) Cluster Split

Cluster
Representative

rc0=(cidc0, {a0, b0, c0,
d0}, src={A,B,C,D})
rc1=(cidc1, {a1, b1, c1},
src={A,B,C})

rc2=(cidc2, {a2, b2},
src={A,B})
rc3=(cidc3, {c2, d2},
src={C,D})

rc0

Blocking +
Cluster

Similarity
Cluster Aggregation

rc1

Cluster Merge

rc6 =(cidc6,{a2,b2,c2,
d2}, src={A,B,C,D}) b0 a0 d0 c0

b1 a1

d2

c1

b2 a2 c2

b3 a3

d4

b0 a0 d0 c0

b1 a1

d2

c1

b2 a2 c2

b3 a3

d4

Refine cluster
consistency

b0 a0 d0 c0

b1 a1

d2

c1

b2 a2 c2

b3 a3

d4

d2 b2 a2 c2

b3 a3

d4

b0 a0 d0 c0

b1 a1 c1

Split

rc4=(cidc4, {a3, b3},
src={A,B})

rc5=(cidc5, {d4}, src={D})

rc3 0.9 rc2

rc3

rc5

d2 b2 a2 c2

cidc6

rc1 =(…) b1 a1 c1

cidc1
rc4 =(…) b3 a3

cidc4
rc5 =(…) d4

cidc5

rc0 =(…) b0 a0 c0

cidc0
d0

rc4 0.8

Figure 3. Running example processed with SplitMerge clustering.

70

SplitMerge starts with computing connected components (line 2 of Algorithm 4) on the input
similarity graph to create initial components Cinit. The resulting components may often violate the
required source consistency since entities from the same source may be indirectly linked and thus
become members of the same connected component. In our example in Figure 3, there are only
two connected components where the smaller one (with entities c2 and d2) is source-consistent
but the larger one contains up to four entities per source. To achieve source-consistent clusters,
we decompose the inconsistent components by removing links that result in a violation of source
consistency. The links between (a0, b0) and (b0, a1) result in a source inconsistency for sourceA and
we solve this by removing one of the two links (the one with lower similarity). Another example
with three links resulting in a source inconsistency is (b1, c1, a2, b2); again, we eliminate at least
one link, e. g., (c1, a2), to solve the problem.
To identify the links to be removed, we record for every entity e the set of already associated data

sources in an element assocSrc(e)which initially contains the source of e (line 4). We iterate over
all links of a component in descending order of their similarity. For each considered link (es, et), we
check whether it results in a source inconsistency which is the case if there is a non-empty overlap
between assocSrc(es) and assocSrc(et). If there is such a conflict, the link will be eliminated
(line 8). Otherwise, we update both sets of associated sources to the union of assocSrc(es) and
assocSrc(et) (line 10). In the example of Figure 3, the conflicting links that are removed are shown
in red. For instance, if we first process link (a0, b0) we will have sources A andB in assocSrc(a0)
and assocSrc(b0). The link (b0, a1) will then lead to a conflict for b0 which is already associated
with source A so that this link is eliminated. After the processing of all links, we determine the
connected components with the remaining links to compute the source-consistent subcomponents
(line 11). In our running example, we obtain the four smaller clusters shown (with green borders)
in the third graph from the left in Figure 3.
For the split phase, we process the clusters from the first phase in parallel. For each cluster,

we first determine link similarities for each pair of entities based on the similarity function fsim
provided in the input. This is needed to identify entities with an insufficient similarity to other
cluster members. To determine possible splits (line 15) we determine for each entity the average
similarity of its links to other cluster members and separate an entity if the average similarity is
below the split threshold ts. After the elimination of such entities, we iteratively repeat this split
processing based on recomputed entity similarities until all entity similarities are at least as high as
threshold ts. In our example, this processing leads to the elimination of d4 from cluster a2, b2, d4
(fourth graph from the left in Figure 3). For each resulting cluster, we next determine a cluster
representative (line 16) from the properties of the cluster members, e. g.based on the values
of preferred sources or a majority consensus of values. As indicated in Figure 3, each cluster
representative has a unique id and keeps track of the covered cluster entities and their sources
as provenance information. The representatives are used for a simplified computation of cluster
similarities as needed for the final merge phase.
The goal of the merge phase is to identify highly similar pairs of clusters that likely represent

the same real-world entity and should thus be combined. This can also help to assign entities
separated during the split phase to a more similar cluster. The first step is to determine a so-called
cluster mapping CM (line 18 of Algorithm 4) consisting of all cluster pairs with a similarity
above the merge threshold tm (merge candidates). The similarity between clusters is computed
by applying function fsim on the cluster representatives. Since the computation of these similarities
is an expensive process for many clusters, we reduce the number of comparisons by applying a
blocking function bf specified as an input parameter (in the current implementation we apply
standard blocking on selected properties of the cluster representatives). Furthermore, we only
compare clusters with entities from different sources since otherwise merging these clusters would
violate source consistency. In our example in Figure 3, we have three clusters in the first block and

71

Algorithm 4: SplitMerge Clustering
Input: SG = (V , E), simFunction fsim, blocking function bf , thresholds ts, tm
Output: Cluster set CS

1 CS← ∅
2 Cinit←computeConnectedComponents(V , E) /* initial clustering */
3 for Ci(Vi, Ei) ∈ Cinit in Parallel do
4 Vi← initAssocSrc(Vi)
5 Esorted ← sortLinkSims(Ei)
6 foreach (es, et) ∈ Esorted do
7 if (assocSrc(es) ∩ assocSrc(et) ̸= ∅) then
8 Ei← removeLink((es, et))
9 else
10 Vi← updateAssocSrc(assocSrc(es) ∪ assocSrc(et))

11 C′i ← computeConnectedComponents(Vi, Ei)
12 CS← CS∪C′i
13 for Ci ∈ CS in Parallel do
14 Ci ← computeLinkSim(Ci,fsim)
15 Csplit← clusterSplit(Ci,ts) /* cluster split */
16 Csplit← createRepresentatives(Csplit)
17 CS←CS∪Csplit
18 CM← computeClusterSim(CS ,fsim,tm,bf) /* create cluster mapping CM */
19 while CM̸= ∅ do
20 (c1, c2)← getBestMatch (CM)
21 cm ← merge(c1, c2) /* cluster merge */
22 CS←CS\{c1, c2} ∪ {cm}
23 CM← adaptMapping (CM,CS ,cm, c1, c2,fsim,tm)

24 return CS

only one in the remaining three blocks. For the first block, we obtain two merge candidates with a
sufficiently high cluster similarity.
Cluster merging is an iterative process (lines 19 to 23) that continues as long as there are merge

candidates in the determined cluster mapping CM. In each iteration, we select the pair of clusters
(c1, c2) with the highest similarity from CM (line 20) and merge it into a new cluster cm (line 21).
This merging also includes the computation of a new representative for cm. The “old” clusters c1
and c2 are removed from the cluster set and the new cluster cm is added. We further need to adapt
CM by removing all cluster pairs involving either c1 or c2 (line 22). Furthermore, we have to
extend CM by similar cluster pairs (ci, cm) for the new cluster cm with a cluster similarity of at
least tm and entities from different sources (line 23). For our running example, we first process
the merge candidate with similarity 0.9 and obtain the merged cluster {a2, b2, c2, d2}. The second
merge candidate will be removed and it is checked whether the new cluster results in new merge
candidates. Since the new cluster contains already entities from every source, merging any other
cluster would result in a source inconsistency so that no newmerge candidates result in the example.
The final outcome of SplitMerge contains five clusters which correspond to the perfect result in
Figure 2.

4.7 CLIP

The CLIP algorithm (Clustering based on LInk Priority) [7] is able to produce source-consistent
clusters. It utilizes different link characteristics such as the link strength and link degree that we
introduce first before outlining the approach.

72

Figure 4. Link strength

In a similarity graph, an entity from a source A may have several links to entities of a source B.
From these links, the one with the highest similarity value is called maximum link. For instance,
for entity a1 in Figure 4 the maximum link with respect to source B is the one with similarity 0.95
to entity b1. Based on this concept we define the strength of links and classify them into strong,
normal, and weak links. Considering a link ℓ between entity ei from source A and entity ej from
another source B we define these link types as follows:

• Link ℓ is classified as a strong link, if it is the maximum link from both sides, i.e. for ei to
source B and for ej to source A. In Figure 4, entity a1 from source A has a strong link, colored
in green, to b1 in sourceB. Note that an entity can have several strong links to different sources,
e.g. a1 is also strongly linked to c2 from source C.

• Link ℓ is called a normal link, if it is the maximum link for only one of the two sides. In Figure
4, the link between a1 and b2 is a normal link (colored in blue) as it is the maximum link from
b2 to source A, but not the maximum link from a1 to source B.

• Link ℓ is a weak link, if it is not the maximum link for any of the two sides. In Figure 4, the
link between a1 and b0 is such a weak link and is shown with a red dashed line.

Furthermore, we define link degree of a link as the minimum degree of the two linked vertices. In
Figure 4, the vertex degree of a1 is 4 and the vertex degree of b1 is 3, so that the link degree between
a1 and b1 is min(4, 3) = 3. Finally, we call a source-consistent cluster that contains entities from
all sources a complete cluster. In Figure 2, the cluster containing the entities with index 0 is a
complete cluster since it is source-consistent (at most one entity per source) and contains at least
one entity for each of the four sources. The definition implies that complete clusters contain exactly
one entity from each input data source.
The CLIP algorithm favors strong links for finding clusters while weak links will be ignored.

This aims at finding good clusters even when the similarity graph contains many links with lower
similarity values. The approach works in two main phases. In the first phase, CLIP determines all
complete clusters based on strong links between entities from all sources. The second phase also
considers normal links and iteratively clusters the remaining entities based on link priorities such
that no source-inconsistent clusters are generated.
The pseudocode of CLIP is shown in Algorithm 5. Its input is a similarity graph SG and a

configuration parameter specifying how tho determine link priorties; the output is the cluster set
CS . Figure 5 illustrates the algorithm for the entities and similarity graph from our running example
from Figure 2. In phase 1, we start with determining the strength of all links (line 2 of Algorithm 5).
Then we apply computeConnectedComponents on the graph with vertices V and only strong
links EStrongto identify complete clusters and add these to the output (lines 3–4). In the example of
Figure 5, the second graph in the upper half differentiates between strong, normal, and weak links
by showing them as green, blue and dashed red lines, respectively. Focusing on strong links, we

73

Algorithm 5: CLIP
Input : SG= (V ,E), config
Output: Set of clusters CS

1 CS← ∅
/* PHASE 1 */

2 determineLinkStrength(E)
/* Links are classified so that E = EStrong ∪ ENormal ∪ EWeak */

3 CS ′← computeConnectedComponents(V ,EStrong)
4 CS← getCompleteClusters(CS ′)
/* PHASE 2 */

5 V ′← V- VComplete, E ′← (EStrong- EComplete) ∪ ENormal
/* Vertices and links of the complete clusters are removed from the current graph G' */

6 CS ′← computeConnectedComponents(V ′,E ′)
7 for (Ci∈ CS ′) in Parallel do
8 if (isSourceConsistent(Ci)) then
9 CS← CS∪ Ci
10 else
11 Esorted← sortLinksByPriority(E ′, config)
12 foreach (es, et) ∈ Esorted do
13 if (compatible(Cs,Ct)) then

/* Cs and Ct are the clusters of entities es and et, respectively */
14 mergeClusters(Cs,Ct)
15 updateClusterSet(CS i)

16 CS← CS∪
k∪

i=1
CS i

obtain four connected components in the example, one of which (for index 0) results in a complete
cluster that is added to the output of phase 1.
For phase 2, we remove the vertices and edges from the complete clusters. Furthermore, we

ignore weak links and only consider strong and normal links (lines 5 of Algorithm 5). Again we
use computeConnectedComponents to consider the resulting connected components as possible
clusters (line 6). Afterwards these components Ci are processed in parallel (line 7). If the cluster Ci is
already a source-consistent cluster, it is directly added to the CLIP output (lines 8–9). Otherwise the
component/cluster is source-inconsistent and will be processed as outlined below. In the example
of Figure 5, phase 2 is illustrated in the lower part which starts with a reduced similarity graph that
has no longer the entities from the complete cluster determined in phase 1 and that only contains
strong and normal links. We then obtain three connected components two of which (with index 2
and index 3) are already source-consistent clusters that are thus added to the output. The remaining
source-inconsistent component/cluster needs further processing.
In the processing of source-inconsistent clusters/components we sequentially process the

intra-component links (lines 12–15) in the order of their maximal link priority (determined by
sortLinksByPriority in line 11) which is based on the link similarity value, link strength and
link degree. The parameter config in line 11 determines the weight of these three factors to compute
the link priority. Assuming that the individual entities are singleton clusters in the beginning, we
iteratively process the links to determine whether the clusters of the linked entities can be merged
without introducing source inconsistency. In line 13, we thus check for each link (es, et) whether
their clusters Cs and Ct are compatible, i.e. they do not include more than one entity per source. Only
if this the case, we merge the two clusters and update the cluster set accordingly (lines 14–15). The

74

Figure 5. Running example processed with CLIP clustering

union of all cluster sets CS i determined in this way for the different components combined with
the previously determined clusters in phase 1 form the final output of CLIP (line 16).
In the example of Figure 5, we start with the link between a2 and b2 in the third graph for phase

2 and merge these entities into a new cluster. Then the link between b1 and c1 is selected and these
entities are merged into one cluster as well. Then the link from c1 to a2 is taken. The clusters on
the ends of this link are not compatible because both have one entity from source B. Processing all
links in sorted order in the example leads to adding the entity a1 to the cluster containing entities of
index 1. Similarly, the entity d4 is added to the cluster containing entities a2 and b2. The output of
phase 2, together with the output of phase 1, results in five clusters. Compared to the perfect result
shown in Figure 2, only three clusters (with indices 0, 1, 3) are correct while the entities with index
2 are not grouped together because they were not linked in the similarity graph due to the lossy
blocking approach applied.
The clustering in the second phase is an iterative process mainly based on link priority. The initial

CLIP implementation of [7] updated link priorities in each iteration thereby causing high runtimes.
The optimized CLIP version, described in this section, computes the link priorities only once and
thus uses static priorities in the second phase. We found out that the new approach achieves about
the same result quality but leads to much lower runtimes which will be presented in Section 5.

5 Evaluation

The goal of evaluation is to comparatively evaluate the effectiveness and efficiency of the
considered clustering approaches and their distributed implementations for different datasets
and configurations. We first describe the used datasets from three domains and the considered
configurations. We then analyze the relative match and clustering effectiveness of the clustering
schemes. Finally we evaluate the runtime performance and scalability of the approaches.

75

5.1 Datasets and Configuration Setup

For our evaluation we use datasets from three domains for different numbers of duplicate-free
sources. Table 3 shows the main characteristics of the datasets, in particular, the number of clusters
and match pairs of the perfect ER result. The smallest dataset DS1 contains geographical real-world
entities from four different data sources (DBpedia, Geonames, Freebase, NYTimes) and has already
been used in the OAEI competition3. For evaluation we focused on a subset of settlement entities
as we had to manually determine the perfect clusters and thus the perfect match pairs.

Table 3. The specifications of datasets.

domain attributes #entities #sources #perfect #clusters
match pairs

geography (DS1) label, longitude, latitude 3,054 4 4,391 820
music (DS2) title, length, artist, album, year, language 20,000 5 16,250 10,000
persons (DS3) name, surname, suburb, 5,000,000 5 3,331,384 3,500,840

postcode 10,000,000 10 14,995,973 6,625,848

For the two larger evaluation datasets DS2 and DS3 we applied advanced data generation and
corruption tools [32] to be able to evaluate the ER quality and scalability for larger datasets and a
controlled degree of corruption. DS2 is based on real records about songs from the MusicBrainz
database but uses the DAPO data generator to create duplicates with modified attribute values [32].
The generated dataset consists of five sources and contains duplicates for 50% of the original
records in two to five sources. All duplicates are generated with a high degree of corruption
to stress-test the ER and clustering approaches. DS3 is based on real person records from the
North-Carolina voter registry and synthetically generated duplicates using the tool GeCo [33].
We consider two configurations with either 5 or 10 sources each having 1 million entities; i.e.
we process up to 10 million person records. Each source is duplicate-free, but 50% of the entities
are replicated in all sources without any corruption. Moreover, 25% of entities are corrupted and
replicated in all sources, and the remaining 25% are corrupted but present in only some sources.
For the generation of corrupted records we applied a moderate corruption rate of 20%, i.e. most
attribute values remained unchanged. The datasets are available on the website4
To generate the similarity graphs for the different datasets as the input of the clustering schemes,

we experimented with a large spectrum of blocking and match configurations. Due to space
restrictions, wewill mostly report results only for the default configurations specified in Table 4 that
resulted already in good match quality even without clustering. All configurations apply standard

Table 4. Default blocking and match configuration for different datasets.

dataset blocking key similarity functions match rule
DS1 prefixLength1(label) sim1: Jarowinkler (name) sim1 ≥ θ &

sim2: geographical distance sim2 ≤ 1358 km
DS2 prefixLength1(album) sim1: 3Gram (title) sim1 ≥ θ

DS3 prefixLength3(surname) sim1: Jarowinkler (name) sim1≥ 0.9 &
sim2: Jarowinkler (surname) sim2 ≥ 0.9 &
sim3: Jarowinkler (suburb) sim3 ≥ θ &
sim4: Jarowinkler (postcode) sim4 ≥ θ

blocking with different blocking keys. Thematch rules specify the conditions when a pair of entities
is considered a match. As shown in Table 4, we use different similarity functions (string similarity
3 OAEI 2011 IM: http://oaei.ontologymatching.org/2011/instance/
4 https://dbs.uni-leipzig.de

76

https://dbs.uni-leipzig.de

functions or geographical distance) to compute attribute similarities and require the similarities to
reach or exceed a minimal fixed or variable similarity threshold θ.

5.2 Match Quality of Clustering Approaches

To evaluate the ER quality of our clustering results we use the standard metrics precision, recall
and their harmonic mean, F-Measure. These metrics are determined by comparing the computed
match pairs (derived from the computed clusters assuming that all entities in a cluster match) with
the perfect match results.
In Figure 6, we compare the obtained precision, recall and F-Measure results for the eight

clustering schemes, different similarity thresholds θ and our three datasets using the default
configurations from Table 4 to determine the initial similarity graphs. We also include the results

Precision Recall F-Measure

D
S1

D
S2

D
S3
-1
0
Pa
rti
es

Figure 6.Match quality of clustering-based ER approaches.

77

obtained already with the similarity graphs used as input to the clustering schemes, although these
graphs only contain links, but no clusters. Furthermore, we show the results for a SplitMerge
variation called Split that leaves out the merge phase for faster processing. We observe that for
DS1 and DS3 most clustering schemes achieve a relatively high F-Measure of more than 0.9 (DS1)
and 0.8 (DS3) for the considered θ range between 0.75 and 0.9. By contrast, for the noisy data
records of DS2 we had to lower the similarity thresholds to values between 0.35 and 0.45 and still
could mostly not exceed the quality of the input similarity graph (with a maximal F-Measure of
about 0.75) underlining that DS2 represents a more difficult match problem than DS1 or DS3. For
SplitMerge, we also experimented with different values for the split and merge thresholds and we
found that the split threshold should be chosen lower than the similarity threshold θ so that clusters
are only split when there are links with a low similarity. By contrast the merge threshold should
be higher than θ so that only very similar clusters should be merged. The shown results refer to a
fixed setting per dataset, e.g. a split threshold of 0.4 and a merge threshold of 0.8 for DS1.
Comparing the clustering schemes, we observe that there are substantial differences in their

relative match quality. Connected Components reaches the lowest F-Measure for all datasets and
almost all threshold values because it suffers from very poor precision values. Merge Center shows
a similar behavior in terms of poor precision and F-Measure, indicating that the merging of clusters
can often lead to wrong cluster decisions. From the other previously known ER clustering schemes
(CCPivot, Center, Star-1, and Star-2), Star-1 has the lowest F-Measure especially for lower values
of the similarity threshold values. The other approaches, Center, Star-2 and CCPivot, are superior
although they can exceed the F-Measure of the input graph in only few cases (Star-2 for DS1, Center
for DS3). The better quality of Center comes from its initial focus on edges with high weights
thereby ignoring edges with lower similarity. Star-2 is better than Star-1 since its degree-based
selection of cluster centers is based on a high degree of similarity to neighbors rather than only the
number of neighbors. CCPivot improves precision over the input similarity graph but suffers from
lower recall so that F-Measure is not improved over the similarity graph.
By contrast, the two newly introduced algorithms, CLIP and SplitMerge (as well as Split),

achieve excellent match quality and outperform all previous algorithms (and the input similarity
graph) in terms of precision and F-Measure for all three datasets. CLIP generally reaches the best
precision due to its ignorance of weak links making it effective even for low similarity thresholds
as necessary for low data quality. The recall of CLIP, SplitMerge and Split is also among the best
values achieved, especially for SplitMerge which is based on connected components and where the
final merge phase helps to find additional links. A closer inspection of the CLIP behavior showed
that its good recall is already achieved by determining the connected components for finding
complete clusters and source-consistent clusters involving only strong and normal links. Comparing
Split and SplitMerge, SplitMerge always achieves a slightly better F-Measure because its merge
phase leads to a better recall than for Split that more than outweighs a somewhat reduced precision.
For DS2, Split resp. SplitMerge are significantly better than CLIP and the other approaches due to
a high precision resp. recall while CLIP outperforms SplitMerge for DS3 due to a better precision.
These observations are confirmed by Figure 7 showing the average F-Measure results of the

clustering schemes over all threshold configurations. The vertical lines show the F-Measure spread
between the minimal and maximal value for the different threshold values used to determine the
input similarity graphs. We again observe the low and highly variable match quality of connected
components and MergeCenter. By contrast, the remaining algorithms including the top-performing
SplitMerge and CLIP algorithms are more robust and achieve much better F-Measure values.
Interestingly, the Split approach alone achieves almost the same high F-Measure than SplitMerge.
SplitMerge always achieves the same or better recall and F-Measure than Split, but the additional
gains in F-Measure are small (at most 2% for DS2). CLIP is similarly effective as Split and
SplitMerge, but it is easier configurable since it does not require the specification of additional
similarity thresholds for splitting and merging.

78

DS1 DS2 DS3

Figure 7. Average F-Measure results with range between minimal and maximal values

5.3 Runtimes and Speedup

We determine the runtimes of the clustering algorithms on a shared nothing cluster with 16 worker
nodes. Each worker consists of an E5-2430 6(12) 2.5 Ghz CPU, 48 GB RAM, two 4 TB SATA
disks and runs openSUSE 13.2. The nodes are connected via 1 Gigabit Ethernet. Our evaluation
is based on Hadoop 2.6.0 and Flink 1.1.2. We run Apache Flink standalone with 6 threads and
40 GB memory per worker. In our experiments, we vary the number of workers by setting the
parallelism parameter to the respective number of threads (e.g. 4 workers correspond to 24 threads).
The runtime of all algorithms is measured for the largest dataset DS3 with 5 and 10 parties applying
the configuration from Table 4 with θ = 0.80. The DS3 input datasize is thus doubled for 10
parties compared to 5 parties. We only evaluate the runtimes for the clustering algorithms since the
time to determine the similarity graphs is the same for all clustering approaches. Some clustering
approaches could not be executed for 1 or 2 workers only due to high memory requirements. We
thus evaluate the runtimes for configurations between 4 and 16 workers.
Table 5 shows the measured runtimes for the two DS3 datasets. The increased dataset size for

10 parties leads to higher runtimes for all algorithms although to different degrees. As expected,
the fastest runtimes are achieved by the simple Connected Components approach. By contrast,
CCPivot and SplitMerge have the worst runtimes due to large memory requirements and a high
message overhead for iterative processing. CCPivot even suffered from out-of-memory errors and
could only be executed for 16 workers for the bigger dataset (10 parties). Table 5 also shows the
runtimes for Split, i.e. SplitMerge without the final merge phase, which achieved already a top
match quality (Figure 7). These runtimes are much faster than for SplitMerge and among the fastest
of all algorithms. This shows that the final merge phase is the main performance bottleneck of

Table 5. Runtimes for clustering schemes (seconds)

dataset DS3 - 5 parties DS3 - 10 parties
#workers 4 8 16 4 8 16
ConCom 51 57 55 101 79 79
CCPivot 1530 1008 688 - - 1303
Center 390 208 117 1986 864 423

MergeCenter 640 349 194 3767 1592 695
Star-1 288 149 85 783 367 197
Star-2 214 124 67 720 317 173
Split 255 145 86 873 445 278

SplitMerge 1754 1423 1168 4792 3618 2819
CLIP 190 101 69 674 351 228

79

a. Speedup (DS3-5 parties) b. Speedup (DS3-10 parties)

Figure 8. Runtimes and speedup

SplitMerge since it requires the similarity computation for a large number of cluster pairs and an
expensive iterative merge processing. CLIP with the new implementation is even faster than Split
and thus among the fastest algorithms. The old, iterative version of CLIP needed about 5000 s with
16 workers for DS3 with 10 parties [7] so that the new implementation improves runtimes by about
a factor 20 for this dataset.
Except for connected components, all algorithms can reduce their runtimes by applying more

workers, especially for the larger dataset with 10 parties. Figure 8 shows the resulting speedup
values. For DS3 with 5 parties, most algorithms except the iterative CCPivot and SplitMerge
approaches achieve an almost linear speedup. By contrast, the high-quality approaches Split and
CLIP scale well for this dataset.
For the bigger dataset with 10 parties, speedup values are mostly even better and partly

super-linear. The latter, however, is an artifact for the slower algorithms like Merge Center that
perform poorly for 4 workers because of memory bottlenecks (its runtime for 4 workers is almost
6 times higher for 10 parties than for 5 parties). The substantially increased aggregate memory
capacity for 8 and 16workers thus enabled super-linear runtime improvements but without reaching
the absolute runtimes of fast algorithms like Star-2. Again, SplitMerge scales poorly due to the
overly expensive merge phase while Split and CLIP achieve both low absolute runtimes and good
speedup.
The high runtimes for SplitMerge (and CCPivot) are heavily influenced by the underlying

Flink and Gelly systems and its approaches for iterative processing leading to high memory and
communication overhead. We are investigating possible performance optimizations to make the
approaches more scalable.

6 Conclusions and Outlook
We presented a new scalable entity resolution (ER) framework called FAMER supporting the
parallel linking and clustering of entities from multiple sources. The parallel execution of ER
workflows is based on the Big Data framework Apache Flink. For entity resolution, FAMER first
builds a similarity graph linking similar entities from all sources and then applies clustering to
group together matching entities. For parallel clustering we currently support eight approaches that
have been comprehensively evaluated for datasets from three domains. The evaluation showed that
the clustering approaches CLIP, SplitMerge and Split (SplitMerge without merge phase) achieve
a high match quality that is clearly superior to other previously known ER clustering schemes. In
particular, they ensure source-consistent clusters with at most one entity per source as required for

80

duplicate-free sources. Unfortunately, the current implementation for SplitMerge is expensive and
not yet scalable to large datasets. By contrast, both Split and CLIP achieve high match quality and
good execution times and scalability making them good default schemes for multi-source entity
clustering.
We are currently investigating performance optimizations of the SplitMerge algorithm to make it

more scalable. We have also started to investigate incremental clustering approaches, where entity
clusters are incrementally extended for new entities and new datasets [34]. We further plan to make
the FAMER tool with the proposed clustering schemes publicly available and apply it in several
applications, in particular to build large, high quality knowledge graphs.

Acknowledgement

This work was partly funded by the German Federal Ministry of Education and Research within
the project Competence Center for Scalable Data Services and Solutions (ScaDS) Dresden/Leipzig
(BMBF 01IS14014B) and by the German Research Foundation under grant number RA 497/19-2.

References

[1] P. Christen,Datamatching: concepts and techniques for record linkage, entity resolution, and duplicate
detection. Springer, 2012.

[2] H. Köpcke and E. Rahm, “Frameworks for entity matching: A comparison,” Data & Knowledge
Engineering, vol. 69, no. 2, pp. 197–210, 2010. [Online]. Available: https://doi.org/10.1016/j.datak.
2009.10.003

[3] L. Kolb, A. Thor, and E. Rahm, “Dedoop: Efficient deduplication with Hadoop,” PVLDB, vol. 5,
no. 12, pp. 1878–1881, 2012. [Online]. Available: https://doi.org/10.14778/2367502.2367527

[4] E. Rahm, “The case for holistic data integration,” in Proc. Advances in Databases and
Information Systems (ADBIS). Springer LNCS, pp. 11–27, 2016. [Online]. Available: https:
//doi.org/10.1007/978-3-319-44039-2_2

[5] M. Nentwig, A. Groß, and E. Rahm, “Holistic entity clustering for linked data,” in IEEE ICDMW,
2016. [Online]. Available: https://doi.org/10.1109/icdmw.2016.0035

[6] M. Nentwig, A. Groß, M. Möller, and E. Rahm, “Distributed holistic clustering on linked data,”
in Proc. On the Move to Meaningful Internet Systems. OTM, Part II, Springer LNCS 10574, pp.
371–382, 2017. [Online]. Available: https://doi.org/10.1007/978-3-319-69459-7_25

[7] A. Saeedi, E. Peukert, and E. Rahm, “Using link features for entity clustering in knowledge graphs,”
in Proc. European Semantic Web Conference (ESWC), pp. 576–592, 2018. [Online]. Available:
https://doi.org/10.1007/978-3-319-93417-4_37

[8] A. Saeedi, E. Peukert, and E. Rahm, “Comparative evaluation of distributed clustering schemes for
multi-source entity resolution,” in Advances in Databases and Information Systems. Springer, pp.
278–293, 2017. [Online]. Available: https://doi.org/10.1007/978-3-319-66917-5_19

[9] M. Nentwig, M. Hartung, A.-C. Ngonga Ngomo, and E. Rahm, “A survey of current link
discovery frameworks,” Semantic Web, vol. 8, no. 3, pp. 419–436, 2017. [Online]. Available:
https://doi.org/10.3233/sw-150210

[10] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas, “Comparative analysis of approximate blocking
techniques for entity resolution,” Proc. VLDB Endowment (PVLDB), vol. 9, no. 9, pp. 684–695, 2016.
[Online]. Available: https://doi.org/10.14778/2947618.2947624

81

https://doi.org/10.1016/j.datak.2009.10.003
https://doi.org/10.1016/j.datak.2009.10.003
https://doi.org/10.14778/2367502.2367527
https://doi.org/10.1007/978-3-319-44039-2_2
https://doi.org/10.1007/978-3-319-44039-2_2
https://doi.org/10.1109/icdmw.2016.0035
https://doi.org/10.1007/978-3-319-69459-7_25
https://doi.org/10.1007/978-3-319-93417-4_37
https://doi.org/10.1007/978-3-319-66917-5_19
https://doi.org/10.3233/sw-150210
https://doi.org/10.14778/2947618.2947624

[11] A.-C. Ngonga Ngomo and S. Auer, “LIMES - A Time-Efficient Approach for Large-Scale Link
Discovery on the Web of Data,” in Proc. International Joint Conferences on Artificial Intelligence
(IJCAI), pp. 2312–2317, 2011.

[12] L. Kolb, A. Thor, and E. Rahm, “Load balancing for MapReduce-based entity resolution,” in
Proc. IEEE 28th Int. Conf. on Data Engneeing (ICDE), pp. 618–629, 2012. [Online]. Available:
https://doi.org/10.1109/icde.2012.22

[13] L. Kolb, A. Thor, and E. Rahm, “Multi-pass sorted neighborhood blocking with MapReduce,”
Computer Science-Research and Development, vol. 27, no. 1, pp. 45–63, 2012. [Online]. Available:
https://doi.org/10.1007/s00450-011-0177-x

[14] D. Mestre, C. Pires, D. Nascimento, A. deQueiroz, V. Santos, and T. Araujo, “An efficient Spark-based
adaptive windowing for entity matching,” Journal of Systems and Software, vol. 128, pp. 1–10, 2017.

[15] L. Gagliardelli, S. Zhu, G. Simonini, and S. Bergamaschi, “Bigdedup: a Big Data integration
toolkit for duplicate detection in industrial scenarios,” in Proc. Int. Conf. on Transdisciplinary
Engineering (TE2018), vol. 7, pp. 1015–1023, 2018. [Online]. Available: https://doi.org/10.3233/
978-1-61499-898-3-1015

[16] D. Singh and C. K. Reddy, “A survey on platforms for big data analytics,” Journal of Big Data, vol. 2,
no. 1, p. 8, 2015. [Online]. Available: https://doi.org/10.1186/s40537-014-0008-6

[17] A. Gruenheid, X. L. Dong, and D. Srivastava, “Incremental record linkage,” Proc. on PVLDB, vol. 7,
no. 9, pp. 697–708, 2014. [Online]. Available: https://doi.org/10.14778/2732939.2732943

[18] M. Pershina, M. Yakout, and K. Chakrabarti, “Holistic entity matching across knowledge
graphs,” in IEEE Int. Conf. on Big Data, pp. 1585–1590, 2015. [Online]. Available: https:
//doi.org/10.1109/bigdata.2015.7363924

[19] O. Hassanzadeh, F. Chiang, H. Lee, and R. Miller, “Framework for evaluating clustering
algorithms in duplicate detection,” PVLDB, vol. 2, no. 1, pp. 1282–1293, 2009. [Online]. Available:
https://doi.org/10.14778/1687627.1687771

[20] F. Chierichetti, N. Dalvi, and R. Kumar, “Correlation clustering in MapReduce,” in Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD
’14, pp. 641–650, 2014. [Online]. Available: https://doi.org/10.1145/2623330.2623743

[21] J. Aslam, E. Pelekhov, and D. Rus, “The star clustering algorithm for static and dynamic
information organization.” J. Graph Algorithms Appl., vol. 8, pp. 95–129, 2004. [Online]. Available:
https://doi.org/10.7155/jgaa.00084

[22] E. Rahm and H. H. Do, “Data cleaning: Problems and current approaches,” IEEE Data Eng. Bull.,
vol. 23, no. 4, pp. 3–13, 2000.

[23] H. Köpcke, A. Thor, and E. Rahm, “Learning-based approaches for matching web data
entities,” IEEE Internet Computing, vol. 14, no. 4, pp. 23–31, 2010. [Online]. Available:
https://doi.org/10.1109/mic.2010.58

[24] M. A. Rostami, A. Saeedi, E. Peukert, and E. Rahm, “Interactive visualization of large similarity
graphs and entity resolution clusters,” in Proc. 21st International Conference on Extending Database
Technology (EDBT), 2018.

[25] M. Junghanns, A. Petermann, N. Teichmann, K. Gómez, and E. Rahm, “Analyzing extended property
graphs with Apache Flink,” in Proc. ACM SIGMOD Workshop on Network Data Analytics, 2016.
[Online]. Available: https://doi.org/10.1145/2980523.2980527

[26] M. Junghanns, M. Kießling, N. Teichmann, K. Gómez, A. Petermann, and E. Rahm, “Declarative and
distributed graph analytics with GRADOOP,” Proc. VLDB Endowment (PVLDB), vol. 11, no. 12, pp.
2006–2009, 2018. [Online]. Available: https://doi.org/10.14778/3229863.3236246

82

https://doi.org/10.1109/icde.2012.22
https://doi.org/10.1007/s00450-011-0177-x
https://doi.org/10.3233/978-1-61499-898-3-1015
https://doi.org/10.3233/978-1-61499-898-3-1015
https://doi.org/10.1186/s40537-014-0008-6
https://doi.org/10.14778/2732939.2732943
https://doi.org/10.1109/bigdata.2015.7363924
https://doi.org/10.1109/bigdata.2015.7363924
https://doi.org/10.14778/1687627.1687771
https://doi.org/10.1145/2623330.2623743
https://doi.org/10.7155/jgaa.00084
https://doi.org/10.1109/mic.2010.58
https://doi.org/10.1145/2980523.2980527
https://doi.org/10.14778/3229863.3236246

[27] M. Junghanns, A. Petermann, M. Neumann, and E. Rahm, “Management and analysis of big graph
data: Current systems and open challenges,” in Handbook of Big Data Technologies. Springer, 2017,
pp. 457–505. [Online]. Available: https://doi.org/10.1007/978-3-319-49340-4_14

[28] O. Hassanzadeh and R. Miller, “Creating probabilistic databases from duplicated data,” The
VLDB Journal, vol. 18, no. 5, pp. 1141–1166, 2009. [Online]. Available: https://doi.org/10.1007/
s00778-009-0161-2

[29] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” Machine Learning, vol. 56, no. 1-3, pp.
89–113, 2004. [Online]. Available: https://doi.org/10.1023/b:mach.0000033116.57574.95

[30] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” ACM Trans. on Knowledge
Discovery from Data (TKDD), vol. 1, no. 1, p. 4, 2007. [Online]. Available: https://doi.org/10.1145/
1217299.1217303

[31] X. Pan, D. Papailiopoulos, S. Oymak, B. Recht, K. Ramchandran, and M. Jordan, “Parallel correlation
clustering on big graphs,” in Advances in Neural Information Processing Systems, pp. 82–90, 2015.

[32] K. Hildebrandt, F. Panse, N. Wilcke, and N. Ritter, “Large-scale data pollution with Apache Spark,”
IEEE Transactions on Big Data, p. 1, 2017. [Online]. Available: https://doi.org/10.1109/tbdata.2016.
2637378

[33] P. Christen and D. Vatsalan, “Flexible and extensible generation and corruption of personal data,” in
Proceedings of the 22nd ACM international conference on Conference on information knowledge
management - CIKM ’13, 2013, pp. 1165–1168. [Online]. Available: https://doi.org/10.1145/2505515.
2507815

[34] M. Nentwig and E. Rahm, “Incremental clustering on linked data,” in 2018 IEEE 18th International
Conference on Data Mining Workshops (ICDMW), 2018.

83

https://doi.org/10.1007/978-3-319-49340-4_14
https://doi.org/10.1007/s00778-009-0161-2
https://doi.org/10.1007/s00778-009-0161-2
https://doi.org/10.1023/b:mach.0000033116.57574.95
https://doi.org/10.1145/1217299.1217303
https://doi.org/10.1145/1217299.1217303
https://doi.org/10.1109/tbdata.2016.2637378
https://doi.org/10.1109/tbdata.2016.2637378
https://doi.org/10.1145/2505515.2507815
https://doi.org/10.1145/2505515.2507815

	Scalable Matching and Clustering of Entities with FAMER

