

Complex Systems Informatics and Modeling Quarterly (CSIMQ)

eISSN: 2255-9922

Published online by RTU Press, https://csimq-journals.rtu.lv

Article 90, Issue 15, June/July 2018, Pages 90–109

https://doi.org/10.7250/csimq.2018-15.05

Design-Time Web Usability Evaluation with Guideliner

Jevgeni Marenkov
*
, Tarmo Robal, and Ahto Kalja

Tallinn University of Technology, Tallinn, Estonia

jevgeni.marenkov@gmail.com, tarmo.robal@ati.ttu.ee, ahto.kalja@ttu.ee

Abstract. The diversity of smartphones and tablet computers has become an

integral part of modern life. An essential requirement for web application

development is following web usability guidelines, while designing web user

interface (UI). Even a minor change in UI could lead to usability problems.

Empirical evaluation methods like interviews and questionnaires with user-tests

and card sorting are effective in finding such problems. Nevertheless, there are

multiple obstacles preventing the application of these methods especially for

evaluating minor UI changes, for instance, due to the time and human-resources

they require, and the amount of data to be processed. The purpose of this current

publication is to present Guideliner – a tool for implementation-time automatic

evaluation of web UI conformance to predefined usability guidelines. The main

contribution of the presented solution is enabling immediate cost-efficient and

automated web UI evaluation that conforms to available and set standards.

Keywords: Web usability, Usability guidelines, Web user interface.

1 Introduction

The diversity of computing platforms – computers, laptops, smartphones, tablet computers and

smartwatches – has become an intrinsic part of modern life and culture. Therefore, web user

interface (UI) compatibility with different platforms, e.g. mobile devices, is an essential

requirement for each web application. Furthermore, UIs should also be compatible with the

diversity of software platforms (including Android, iOS, Windows, Linux, etc.) and different

browsers (Safari, Chrome, Firefox, etc.) regardless of their version. Device and platform

compatibility covers only a minor part of requirements set for UIs. In fact, UIs of web

applications should be consistent between pages, attractive, user-friendly, easy to use and

navigate. All such characteristics are included in the definition of usability. Usability is the

extent to which a product can be used by specified users to achieve specified goals with

effectiveness, efficiency and satisfaction in a specified context of use [1]. Usability covers many

* Corresponding author

© 2018 Jevgeni Marenkov et al. This is an Open Access article licensed under the Creative Commons Attribution License

(CC BY 4.0), https://creativecommons.org/licenses/by/4.0

Reference: J. Marenkov, T. Robal, and A. Kalja, “Design-Time Web Usability Evaluation with Guideliner,” Complex Systems

Informatics and Modeling Quarterly, CSIMQ, no. 15, pp. 90–109, 2018. Available: https://doi.org/10.7250/csimq.2018-15.05

Additional information. Authors ORCID iD: J. Marenkov – orcid.org/0000-0001-8764-1465, T. Robal – orcid.org/0000-0002-

7396-8843, and A. Kalja – orcid.org/0000-0001-6416-0503. PII S225599221800090X. Received: 11 February 2018.

Accepted: 29 June 2018. Available online: 31 July 2018.

mailto:tarmo.robal@ati.ttu.ee
mailto:ahto.kalja@ttu.ee
https://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0001-8764-1465
https://orcid.org/0000-0002-7396-8843
https://orcid.org/0000-0002-7396-8843
https://orcid.org/0000-0001-6416-0503

91

areas such as accessibility: referring to UI requirements for people experiencing disabilities, and

learnability: assuring that web application functionality is complete and correctly displayed.

Demand for usable web applications has led to a variety of approaches and methods which

help to achieve a high level of usability. Many studies [2], [3], [4], [5] provide usability

guidelines, best design practices, recommendations and patterns to follow when designing web

UI. Usability guidelines and usability criteria advise on how certain UI element should be

designed [6]. In the context of our research, we are focusing on those usability guidelines that

could be evaluated automatically – without the involvement of potential users with the UI

evaluation process.

A crucial responsibility of UI designers and quality assurance specialists is to verify that the

designed solution satisfies all business requirements and predefined usability guidelines; and that

its overall information architecture is clear for potential users. There are two major groups of

methods for evaluating usability [7]: empirical and inspection methods. Usability Inspection

methods require the expertise of usability inspectors to detect usability problems in user interface

design. They include such methods as: Heuristic Evaluation, Formal Usability Inspection,

Pluralistic and Cognitive Walkthrough. For their part, Empirical Testing methods require the

participation of real users and include: Card Sorting, Eye Tracking and Questionnaires conducted

with usability test participants. Empirical Testing is efficient in discovering key issues in

information architecture and identifying the flaws and misplacements of elements in web

application design. Despite the fact that Empirical Testing methods are commonly more efficient

than inspection methods, there are many obstacles preventing the wide application of these

methods:

 Organizing and conducting user tests is relatively expensive because it requires a high

demand for human and time resources [8], [9];

 Small software companies do not have the funds to pay for complete consultancy or for

involving usability specialists, as they are expensive to hire [10];

 Difficulty of getting potential users to participate in usability evaluations [9], [11];

 It is not always possible to increase the coverage of evaluated features as evaluating every

single aspect of UI [8] may itself also not be possible.

Herein we focus only on automated usability evaluation. Usability inspection methods are

more flexible towards automation, and multiple methods for the latter already exist. In fact, tools

on automated inspection are applicable for the majority of WUIs (Web User Interface) without

any extra configuration, whereas tools for empirical evaluation require additional application

specific configuration as they evaluate interaction-based problems that, in most cases, are

application specific.

There are multiple sources of guidelines for inspection methods such as Web Content

Accessibility Guidelines (WCAG) [2] and Section 508 [3] standards, multiple design

recommendations and best practices to create a good web experience [4], [5]. The evaluation of

UI conformance to guidelines using inspection methods can be done without involving potential

users of web applications. Moreover, improving the manual usability inspection via automation,

is feasible. There are multiple tools for UI automatic evaluation, e.g. Ocawa
*
, Magenta

†
, and

Evaluera
‡
. Yet, these tools are limited to finding deviations in the HTML source code only; and

evaluating visual aspects of web application UIs, such as the contrast rate of UI elements, the

position of elements on the screen, and many others, is not possible by these tools. Their

integration into the WUI development process is extremely complicated and very often not

possible at all because solutions are distributed as standalone applications without the possibility

of being extended and integrated into the process of continuous delivery.

* http://www.ocawa.com
† http://giove.isti.cnr.it/accessibility/magenta
‡ http://www.evaluera.co.uk

http://www.ocawa.com/
http://giove.isti.cnr.it/accessibility/magenta

92

Another critical requirement to the tools for automatic evaluation of web application usability

is extendibility of predefined usability guidelines with custom application specific usability

guidelines. This is a vital requirement as existing usability guidelines could change or new

guidelines appear (e.g. with the emergence of new devices, e.g. tablet computers, or with the

evolution of new technologies such as HTML 5). It is highly unlikely that any tool contains

usability guidelines suitable for each web application. For instance, e-commerce usability

guidelines presented in e-commerce UX report [12] require to embrace large product images

showing more details and multiple views of the product. The guidelines for e-commerce

however may not be suitable to governmental portals and e-health web applications, e.g. for

retrieving patient’s prescription information. In general, usability guidelines need to be kept up-

to-date, otherwise there is a high risk that a tool soon becomes obsolete.

Different methods exist for describing usability guidelines, including custom usability

guidelines. These methods are embedding usability guidelines into the code of evaluation tool,

using a definition table based approach [13], and XML-based approaches [14], which are capable

of defining various usability guidelines by describing the structure of HTML code. They are

capable of incorporating most of the WCAG accessibility guidelines suitable for automatic

evaluation covering the proper structure of tags, attributes and the relations between them.

Nevertheless, defining guidelines to evaluate visual aspects of a WUI such as the presence of

scrolling, the layout of elements, the positions of elements on the screen, the distance between

elements and many other assessments is not possible with the latter approaches [15]. The main

disadvantage of XML Schema is that it defines the structure of a document providing the

prescriptions how the document is styled. Thereby, it introduces an additional layer of

complexity when it is used to describe the domain of knowledge. A drawback of XML based

languages is that they are HTML centric focusing on HTML tags, attributes and their relations.

Such approach does not suit for defining visual usability guidelines as the HTML standard does

not contain any tags to describe WUI visual characteristics (e.g. there is no HTML tag

responsible for scrolling). Adding additional language constructs would make a XML-based

language opaque and unclear as it then must support both HTML tag specific definition of

guidelines and visual object specific usability guidelines.

To address the aforementioned deficiencies, in this article we explore a possibility to solve the

shortcomings of XML-based languages by constructing a special domain ontology which enables

to capture usability guidelines for evaluating HTML-code as well as visual aspects of WUI.

Constantly changing business requirements drive a need to update and modify existing UI

design and structure. Changing tested and validated UI should be done with extreme caution as

even minor change of UI, or the content of a page, could lead to severe usability problems [15].

For instance, changing the color of link text, making it lighter or darker, could potentially lead to

severe usability problems, e.g. due to low contrast. According to usability guidelines, the

contrast ratio between the letters and the background that is immediately behind the letter should

be kept above 4.5:1. Violating this guideline leads to lower usability for the target users,

including people with disabilities. Thus, usability is extremely dependent on every modification

of UI and, as a result, the immediate evaluation of UI conformance to usability guidelines and

subsequent feedback to UI developers becomes another critical demand. That is important

because finding usability problems early in the development stage makes the fix less costly than

for problems that are found later.

To address the issues of automated WUI evaluation, we propose Guideliner – a fully-

functional tool for implementation-time automatic evaluation of UI conformance to category-

specific usability guidelines during the WUI design and implementation stage. The main

contribution of this solution is to enable immediate cost-efficient and automatic web UI

evaluation and feedback for developers to ensure the UI under development conforms to set

guidelines. Hence, this approach will assist developers and UI testers in finding out usability

problems in an automated way in early stages of UI development; taking advantage of a usability

ontology that we established to store usability domain knowledge together with custom usability

93

guidelines. This domain ontology addresses both HTML-centric accessibility guidelines as well

as usability guidelines covering visual characteristics of WUI.

The rest of the article is organized as follows. In Section 2 we discuss related works of the

research area. Section 3 provides an architecture of the Guideliner tool, while Section 4 provides

information about evaluation of Guideliner. In Section 5 we present the work in progress, and

finally in Section 6 we draw conclusions.

2 Related Works

An essential part of every automated usability evaluation tool (including our solution) is a set of

guidelines against which the UI is to be evaluated. Web Content Accessibility Guidelines

(WCAG) [2] and Section 508 Standards for Electronic and Information Technology [3] are

technical standards providing guidelines that explain how to make web content more accessible

to target users including people with disabilities. In fact, WCAG and Section 508 standards

contain quite similar and partly overlapping accessibility guidelines. Web accessibility is an

attribute through which people with disabilities can perceive, understand, navigate, and interact

with the web, and, moreover, they can contribute to it [16]. Nevertheless, accessibility is only a

certain subset of usability. Many other categories like home page, navigation, content

organization guidelines are not covered by standards. That is the reason why many researchers

aim to establish usability guidelines covering certain elements of UIs [4], [5] not addressed in

standards.

Several researchers have contributed to the development of automated usability evaluation

tools [17], [14], [18], [19]. Schiavone and Paterno [14] proposed Mauve – a tool for automated

usability evaluation capable of evaluating WUI conformance to WCAG accessibility guidelines

of all three levels from A through AAA, containing around 80 different guidelines. Mauve also

provides functionality for designing custom usability guidelines in addition to existing set of

predefined guidelines. Dingli [17] developed a framework called USEFul for automating

usability evaluation enabling a non-expert in the field of usability to conduct usability

evaluation. USEFul separates the definition of guidelines from the usability evaluation logic.

Such approach allows adding, modifying and deleting of guidelines without altering the source

code of the tool. The disadvantage of USEFul is the sophisticated way of adding guidelines. Gay

and Li in [20] proposed an open source tool for automated usability evaluation called AChecker

containing around 100 guidelines. This tool allows checking the compliance of WUI against

WCAG, Section 508 and BITV (a German variant of the internationally recognized web

accessibility standard WCAG 2.0) accessibility guidelines. Although AChecker provides an easy

to use WUI for triggering the evaluation process, it does not allow defining custom usability

guidelines.

In common, all aforementioned tools are limited to finding deviations in the HTML code,

lacking the abilities to evaluate visual aspects of a web application like the presence of scrolling,

layout of elements on the web page, the position of elements on the screen and the distance

between them [15]. This shortcoming has mainly resulted from the selected evaluation approach

– these solutions are based on parsing the HTML code and subsequent validation of HTML

syntax against guidelines. However, today web applications are built not only using HTML but

including stylesheets and scripting into it, and the final rendering is done in user browser.

Thereby, in order to evaluate fully functional WUI, it is needed to consider CSS styles and

JavaScript scripts that might alter HTML, and, after final rendering, perform visual evaluation of

the WUI.

Commercial tools for automated usability evaluation, such as PowerMapper
*
, contain, in

addition to WCAG accessibility guidelines, also some HTML-specific usability guidelines and

search optimization guidelines that ensure correct indexing by search engines. Also, there exist

* https://www.powermapper.com

https://www.powermapper.com/

94

tools that can evaluate certain visual aspects of WUI with some limitations. For instance, Google

Mobile Friendly Test
*
 service performs a sanity check of WUI checking if it is compatible with

mobile devices. It only checks the WUI conformance to six very basic mobile usability

guidelines including five HTML-specific guidelines such as the usage of Flash, font size,

Viewport configuration (three guidelines) and one guideline checking such visual characteristic

of WUI as the size of tap targets. The purpose of the service is to perform initial test and to give

feedback whether WUI is compatible with mobile devices or not. Another tool called Wave
†
 also

proposes additional value to WCAG guidelines by checking the contrast rate of elements. In fact,

contrast guidelines are a part of WCAG, but very few accessibility tools are capable of

evaluating the contrast rate of elements. Nevertheless, Wave lacks the possibility to define

custom usability guidelines in this tool.

Analyzing users' behavior and reusing the knowledge with the purpose of providing more

usable UI is also a promising research direction. There is a category of tools predicting the usage

of the UI based on the knowledge discovery approach [21], [22]. Boza et al. presented a heuristic

approach based on data mining techniques with a purpose of determining relationships between

UI components and discovering possible problems [22]. Using data mining in combination with

mathematical algorithms, they generated rules based on the analysis of test reports. For instance,

when “the site prevents users from making mistakes” then “error messages are written in the user

language”. Preliminary results indicate that the approach is viable for discovering patterns and

relationships between different UI components. Commonly though, such approaches cannot

guarantee high accuracy of evaluation results, because they tend to have misleading results

resulting from the features of algorithms used [23].

An essential output of each evaluation tool is a report providing feedback about UI compliance

to predefined usability guidelines. There are multiple types of research analyzing the structure of

reports containing usability defects, with the purpose of improving the existing format [24], [25],

[26]. Yusop et al. surveyed practitioners in industrial software organizations and in open source

communities about their usability defect reporting practices [24]. Their research showed that

usability reports should contain at least the following information: title/summary, steps to

reproduce, observed result and expected result. In the context of our research, it is important to

provide a clear description of usability problems that were found, and to include expected and

actual results.

In terms of our previous research in the field of UI usability, we have formulated the problem

of assessing application UI conformance against usability guidelines and have designed a

framework that could be used to solve the addressed problem [15]. This framework enables the

tackling of a large set of usability issues during UI development and saves costs and resources in

later system development phases, especially in testing. In [27] we outlined the problem of

design-time usability evaluation and presented proof of a solution concept that provide that it is

feasible to evaluate usability automatically during the design phase of UI development. The

value of the current study with respect to the previous achievements is that we propose a fully

functional tool called Guideliner for implementation-time usability evaluation of web UI. Our

purpose is to provide an overview of all developed components, emphasizing technical

implementation details and also to perform the testing of Guideliner based on different web

applications.

3 Guideliner – Tool for Automated Usability Evaluation

In order to tackle the problems of implementation-time usability evaluation, this section delivers

a system (called Guideliner) that addresses the problem and enables automated evaluation of

WUI conformance to usability guidelines (HTML-centric as well as visual usability guidelines)

* https://search.google.com/test/mobile-friendly
† http://wave.webaim.org

https://search.google.com/test/mobile-friendly
http://wave.webaim.org/

95

already to be accomplished during the implementation phase of WUI development. Also,

Guideliner makes it possible to perform usability pre-release testing verifying that all developed

features are compliant with usability guidelines. In general, the proposed system increases the

overall quality of web UI as it performs the evaluation of HTML-specific usability guidelines as

well as guidelines addressing the visual characteristics of web UI. The applicability of the

Guideliner does not stick to any particular web UI development process (e.g. agile or waterfall);

but rather it is a universal tool challenging the problem of immediate usability evaluation,

especially during web UI development and implementation phases.

3.1 Guideliner Overview

Guideliner is based on Selenium Web Driver
*
 – a tool that provides API for automated

functional WUI testing, and that verifies that WUI behaves in the way expected. Guideliner

takes advantage of the Selenium Web Driver, which provides a full-stack of instruments and

operations needed for automated testing of user interfaces, and uses it as a mechanism to

automate the evaluation process of visual usability aspects against usability guidelines. In

principle, this provides Guideliner with the capability to evaluate WUIs against usability

guidelines on various platforms, including desktop browsers, e.g. Mozilla Firefox, Google

Chrome, Internet Explorer and others; and different mobile platforms such as Android and iOS

with their browser versions.

Architecturally, Guideliner is divided into four self-sufficient software modules based on the

aspect of functionality they cover (see Figure 1 for more details). Such an approach can be called

a separation of concerns [28] and is widely used in the software development industry when one

component has a very limited and narrow scope of functionality that it is responsible for. That

approach allows development and testing of each component in isolation from the rest of the

system, eliminating failures caused by unintentional side effects.

Figure 1. High-level architecture of Guideliner

A core element of Guideliner is an Ontology Repository containing descriptions of usability

guidelines that can be machine-processed on a particular WUI. Such an approach simplifies

sharing of metrics and concepts between various guidelines and between different groups. The

* https://www.seleniumhq.org/projects/webdriver/

cmp General Model

Client-Side Web Application

UI Evaluation Component

Ontology Repository

Ontology Processing Engine

Selenium Based

Usability

Evaluation

Engine

Reporting

Component

Usability

Ontology
Usability

Guidelines

Ontology

Processor

JFact Resoner

Based

Component

Guideline

Evaluation UI

Component

Reporting UI

Component

«use»

«use»

«use»

«use»

«use»

«use»«use»

https://www.seleniumhq.org/projects/webdriver/

96

Ontology Processing Engine is a mediator component responsible for errorless communication

between the ontology repository and the user interface evaluation component. The UI evaluation

component assesses UI conformance to usability guidelines containing a reporting component

responsible for generating a usability evaluation report. A client side web application contains

easy to use UI for managing guidelines and triggering the evaluation process.

Initially, a usability guideline is described by means of ontology. Then, the Ontology

Processing Engine transforms the guideline to the format understandable to the UI Evaluation

Component. Afterwards, the process of automatic evaluation is triggered, checking whether the

UI is accessible from the browser and whether there is a predefined set of guidelines to be

processed. Then, the evaluation of the UI is performed according to the set of guidelines. Finally,

a report is provided to the developer, containing the conformance of UI to the usability

guidelines.

The proposed solution supports HTML 4 and 5, CSS 3 (providing backward compatibility

with previous versions) and JavaScript based user interfaces. It does not require additional

adaptation for web user interfaces, allowing evaluation of any web UI without any extra

configurations.

Below a brief overview of each component is presented:

 Ontology Repository is usability ontology consisting of descriptions of usability guidelines

that are machine-processable. Ontology Repository is responsible for saving and modifying

specified guidelines into categories such as desktop or mobile platform usability guidelines.

Guidelines include various aspects and parts of UIs such as information organization

guidelines, link visual consistence guidelines, text appearance guidelines and form

guidelines.

 Ontology Processing Engine is an intermediary component responsible for reliable data

transfer between Ontology Repository and UI Evaluation Component. Ontology Processing

Engine uses the ontology as an input and returns transformed data into the format specific to

UI Evaluation Component.

 UI Evaluation Component assesses web UI conformance to predefined usability guidelines.

Also, it contains a reporting component used for generating usability evaluation reports

based on the web UI usability evaluation results. The component contains the main

evaluation logic including opening the browser with the web UI being evaluated and

comparing the conditions set in usability guidelines with actual results extracted from web

UI.

 The Client-Side Web Application is an easy-to-use UI for managing usability guidelines and

triggering the evaluation process. Also, it presents comprehensive evaluation results

containing detailed descriptions of passed and failed guidelines.

3.2 Ontology Repository

Ontology is a formal, explicit specification of a conceptualization [29]. Ontology is a prominent

component of an intelligent system. It enables storing and capturing domain knowledge in a

human-understandable, and, at the same time, machine-processable way. In general, ontology

contains entities, attributes, relations and axioms, allowing formal presentation of knowledge as

concepts within a domain, and the relations between these concepts.

Ontology can be described in many languages, e.g. Ontolingua, Loom, and Semantic Web

languages, such as OIL, DAML+OIL, W3C Web Ontology Language (OWL) and RDF Schema.

This paper is concentrating on OWL – a standard language for ontology description

recommended by the W3C. OWL is a Semantic Web language designed to represent rich and

complex knowledge about things, groups of things, and relations between things. OWL was

selected as it is the most widely used language for creating ontologies [30]. OWL enables

capturing knowledge by representing the concepts and relations between them. Primary

components of OWL ontologies are classes (sets consisting of individuals), properties

97

(relationships that link two individuals together) and individuals (also called instances). The

most frequently applied relations between ontology concepts are the is-a relation, that defines the

hierarchy between class and sub-class, and the part-of relation, defining the relationships of an

entity and its components. The formal semantics of OWL allow inferring of classification

taxonomies and thus help to identify inconsistencies in the established ontology at any time.

Thus, OWL is progressive language that is used in developing intelligent systems, and also

coincides with the aim of current work. We used Web Ontology Language (OWL) as a

knowledge representation language; and open source feature rich Protégé ontology editor 5.1
*
 for

creating the ontology.

The idea of integrating WUI usability guidelines into ontology is not new. Xiong et al in [31]

presented an ontology-based approach for organizing and generalizing usability guidelines. They

point out that the main drawback of their approach is the necessity for additional mappings.

Also, the ontology they proposed contained only HTML-specific domain knowledge; e.g.,

concepts for defining HTML tags, attributes and relations between them. The authors point out

that, with their approach, it is impossible to define usability guidelines for describing background

color or contrast between elements on the page.

Our ontology [32] defines only those usability guidelines that can be automatically evaluated.

The ontology contains WCAG and Section 508 guidelines including guidelines involved with

people with disabilities as well as common usability guidelines. Presently the ontology is used

only for storing usability domain knowledge. It does not perform any kind of evaluations of UI

conformance to the guidelines; however, based on available descriptions this could be achieved.

Established usability ontology contains main concepts defined as primitive classes (they have

only necessary conditions defined) including Guideline, GuidelineElement, ElementAttribute,

PageAttribute and ValuePartition (a special class used to refine guideline descriptions through a

pre-defined set of value concepts). Figure 2 outlines class hierarchy of defined usability ontology

and some descendant classes.

Figure 2. Class Hierarchy of defined usability ontology and some descendant classes: excerpt from the

Protégé ontology editor

The purpose of ontology main concepts is described below in more details:

 Guideline – all guidelines are described as subclasses of the general Guideline class.

Guideline class can hold both primitive and defined classes. Defined classes are used to infer

new subclasses (e.g. guideline classes concerned with links) via reasoning based on the

knowledge already available in the ontology.

* Protégé, http://protege.stanford.edu/

http://protege.stanford.edu/

98

 GuidelineElement – descriptions of elements a guideline may be applied to.

GuidelineElement class holds various WUI elements (e.g. link, button, text input) that could

be defined as an element being evaluated.

 ElementAttribute – defines attributes of WUI elements. ElementAttribute class can hold both

visual characteristics (e.g. distance, alignment) of WUI elements as well as HTML-centric

attributes (e.g. alternative text, title).

 PageAttribute – defines attributes applicable to the page as a whole such as page layout and

load time.

 ValuePartition – used to refine the guideline descriptions. For instance, describing the

importance and strength of evidence of a particular guideline.

Before we continue with usability ontology, let us have a look on how the guidelines are

presented. Generally, usability guidelines are presented in a text format. Table 1 demonstrates

usability guideline presented by Google Mobile research group
*
: All buttons should be at least

48 CSS pixels wide. The example guideline presentation contains the following items: brief name

of the guideline, detailed description of the guideline (including the detailed explanation of the

logic behind the guideline), type of guideline (visual usability guideline or the HTML-centric

guideline), evaluation conditions (how the guideline should be evaluated), platform (mobile or

desktop) and source (reference to the standards). The presented guideline is suitable for

automated usability evaluation as it contains concrete evaluation condition that the width of the

link for mobile device should not exceed 48 pixels.

Table 1. Example guideline on link width targeting mobile platforms presented in a text format with

evaluation conditions suitable for automated usability evaluation

Guideline: Every link on WUI should be at least 48 CSS pixel wide.

Description:

The average size of finger pad is approximately 10 millimeters

for adults. The minimal recommended size of tap target is about

seven millimeters that are roughly equal to 48 CSS pixels.

Type of

guideline:

Visual guideline. The width of links can be calculated only on

the finally rendered WUI; it is not possible to calculate the width

of links accurately parsing the source code of the page (as the

width can be affected by JavaScript scripts and various CSS

styles).

Evaluation

conditions:

The width of every link in pixels on the page should be

calculated and checked that it is more or equal to 48 pixels.

Platform: Mobile

Source: Google HCI, Android HCI

Let us define guidelines presented in the text format using introduced usability ontology.

Usability guidelines are defined in the ontology as subclasses of class Guideline. Figure 3 shows

an example of a guideline concept description in the Protégé ontology editor, defining mobile

usability guideline 28-ButtonShouldBeWideEnough.

In order to define a new usability guideline in ontology, a new subclass is added as a subclass

UsabilityGuideline, and a naming convention shown by Figure 4 must be applied. The name of

the class starts with a unique identifier (this is needed to distinguish between usability

guidelines), followed by the code of the category (determines what is the category of usability

guideline), finally, the short name of the guideline is added. The class is made to be disjointed

from other subclasses of the class UsabilityGuideline, so the instance of one subclass of

UsabilityGuideline class cannot be the instance of another subclass (as each usability guideline is

unique). As shown in Figure 3, class 28-ButtonShouldBeWideEnough contains the object

property hasGuidelineElement which defines the element being evaluated. The statement

hasGuidelineElement only Button shows that the defined guideline evaluates only labels; the

* https://developers.google.com/speed/docs/insights/SizeTapTargetsAppropriately

https://developers.google.com/speed/docs/insights/SizeTapTargetsAppropriately

99

statement hasDeviceType only Mobile outlines that the guideline is applicable only to mobile

devices.

Figure 3. Example of a usability guideline concept definition for the guideline “Buttons should be wide

enough” (screenshot from the Protégé ontology editor)

Figure 4. Naming convention applied while describing classes of usability guidelines in the ontology

Additional information about the guidelines is provided as Class Annotations where the

guideline’s general description is added as the ‘guideline’ annotation, the annotation ‘comment’

provides further details; and ‘reference’ provides URL for the particular guideline (Figure 5).

Figure 5. Example of guideline annotation with human-readable comments (screenshot from the Protégé

ontology editor)

3.3 UI Evaluation Component

The ontology described in Section 3.2 is used as an input for Ontology Processing Component.

Before evaluating UI, we should transform usability guidelines (individuals) defined in ontology

by means of OWL Web ontology language (in XML format) to a format that is understandable

by the UI evaluation engine. The transformation is required because processing guidelines in

native OWL format is not trivial due to the complicated API of OWL language. OWL API [33]

100

library has been used for serializing usability ontology into appropriate Java classes. The library

is aligned with OWL 2 structural specification providing interfaces for parsing, rendering the

ontology and manipulation of ontological structures. We used JFact for reasoning over the

domain – a Java port of FaCT++ reasoner [34] having full compatibility with the OWL API

library.

UI Evaluation Component uses Ontology Processing Engine for retrieving usability guidelines

from Ontology Repository. Afterwards, it identifies the element of WUI (and its corresponding

characteristics) that should be evaluated (see Figure 6). Then, it calls evaluation adapter

(adapters are responsible for performing the evaluation of certain WUI components; one such,

LinkAdapter, is responsible for evaluation of link specific characteristics) providing the

characteristics of the element as a parameter of the adapter (e.g. contrast ≥ 4.5). The

corresponding adapter retrieves the actual values of the WUI element characteristic being

evaluated using Selenium WebDriver and asserts whether the retrieved values are corresponding

to the value defined in the usability guideline. An illustrative example could be that if the length

of the Link text is evaluated then the LinkAdapter asks Selenium WebDriver to find all Links and

calculate the length of Link text. Afterwards, LinkAdapter checks if the values returned by

Selenium WebDriver correspond to the value defined in the usability guideline. If the link text of

all Links corresponds to the length of the text in the usability guideline then the success response

is generated; otherwise a failure response is generated.

Thereby, the core mechanism of processing the Web User Interface is Selenium WebDriver

API
*
. Selenium is used for automation of UI tests providing a simple and concise programming

interface. Selenium has full support for most programming languages (Java, C#, Python,

JavaScript, etc.), being compatible with most popular browsers (Chrome, Firefox, Internet

Explorer, etc.). Selenium WebDriver provides rich API commands and operations containing

interfaces for fetching a page, locating UI elements on the screen, filling in forms and many

other operations.

Figure 6. Process of Evaluation WUI conformance to usability guideline

3.4 Client Side Web Applications

Client side web application contains easy to use UI for managing guidelines and triggering the

evaluation process. The potential users of the proposed solution are technical personnel

(including developers and quality assurance specialists) and business users (including analysts

and product owners). The primary deliverable for UI developers is a library providing the API

for evaluating UI conformance to the guidelines on local or remote machine. Business users do

* http://www.seleniumhq.org/projects/webdriver

101

not commonly have a required technical background to run UI tests from the code. That is why a

web application has been designed containing visual functionality for managing guidelines and

triggering the evaluation process.

At first, a set of guidelines to be evaluated should be selected. After selecting the category of

usability guidelines to be evaluated, the URL of the web application to be evaluated must be

specified. After this, the evaluation process can be initiated.

Once the evaluation process has been finished, the report containing usability evaluation

results is shown (Figure 7). Violated guidelines are highlighted in red color; passed guidelines –

in green color. The progress bar on the top of the screen shows the ratio of failed and passed

tests. Evaluation results provide full information of evaluated guidelines including name, code

and description.

Figure 7. Screenshot of the view containing usability evaluation results

By clicking the link Open Failure Report a dialogue opens containing a screenshot, text and

the type (e.g. link, button) of the element violating the guideline (see Figure 8). Also, it contains

a human readable explanation of the reasons for the failure's value. Such a screenshot is provided

whenever possible – for guidelines checking the consistency and validity of HTML code, in

common, no screenshot images are presented; whereas for guidelines evaluating the visual

characteristics of WUI a screenshot of the failed element is always presented making it easier to

understand the reasons for evaluation failure.

102

Figure 8. Screenshot of dialog presenting additional information about a failed guideline

The Client-Side Web Application is a single-page web application that has been built based on

Angular 4 JavaScript framework
*
 using Bootstrap

†
 stylesheets containing an extensive list of

components for designing client web applications. Alternatively, any other front end JavaScript

framework might be selected, such as ReactJS
‡
. In fact, ReactJS and Angular are the most

widely used JavaScript frameworks
§
, both technologies being powerful and flexible. As there are

are no obvious advantages in either technology, we decided in favor of Angular because of the

extensive experience and better expertise in Angular web application development.

Instead of using pure JavaScript, we used TypeScript
**

 – a typed language that compiles into

JavaScript. It is a common approach to write web applications using Typescript, as the Angular

framework itself is written in TypeScript, meaning that there are no any limitations to using

Typescript instead of pure JavaScript.

4 Evaluation of Guideliner

Software verification is an important part of software engineering, which is responsible for

guaranteeing safe and reliable performance of the software systems that the economy or society

relies upon [35]. From the perspective of Guideliner, the software verification process should

prove that Guideliner is capable of evaluating different types of applications (e.g. entertainment

portals, public sector portals, etc.) effectively, regardless of the technology used on UI. Despite

the fact that Guideliner supports HTML/CSS/JavaScript based WUI, the frameworks used for

WUI development and the methods used for composing and formalizing the structure of WUI

HTML/JavaScript/CSS code can, potentially, affect the accuracy of the evaluation process.

There are two types of software verification in common use: dynamic (experimentation) and

static verification. The latter covers static verification methods such as following code

conventions, patterns and software metrics. Dynamic code verification, in its turn, is performed

during the software runtime, verifying that the software behaves in an expected way.

The current article concentrates on dynamic verification with the purpose of finding deviations

in Guideliner's behavior when conformance to usability guidelines for different WUIs is

evaluated. Different types of deviations can be detected such as slow response time, errors

occurring during evaluation, or missing response fields (e.g. missing status of evaluation,

missing error description or missing name of an element that violates the guideline).

* Angular Framework, https://angular.io/
† Bootstrap CSS, https://getbootstrap.com/
‡ React, https://reactjs.org/
§ https://insights.stackoverflow.com/survey/2016
** Typescript, https://www.typescriptlang.org/docs/home.html

https://angular.io/
https://getbootstrap.com/
https://reactjs.org/
https://insights.stackoverflow.com/survey/2016
https://www.typescriptlang.org/docs/home.html

103

To perform dynamic verification of Guideliner, 14 different web applications of Estonian

public service organizations and USA portals from different areas; such as medicine, real estate,

environment and news were used. Estonian public sector portals were selected, as target users of

such portals are all inhabitants of Estonia, having different experiences in using various web user

interfaces and various devices to access the applications. Thus, all selected web applications had

to satisfy general usability guidelines applicable for most web applications. In addition to public

sector web applications, Estonia and USA news portals were selected, providing information

services for wider audiences. The following web applications and portals were selected for

evaluation:

• Republic of Estonia Road Admission Portal
*
 having the same design template as all other

ministry web pages of the Republic of Estonia,

• E-government Portal
†
 providing e-services for all inhabitants in Estonia,

• Government Real Estate Portal
‡
 providing real estate services,

• Government info system management portal
§

 containing repositories for public e-

government services,

• Estonian Research Information System
**

 providing information about Estonian research

activities,

• Republic of Estonia Information System Authority
††

,

• Public healthcare institutions each having absolutely individual design themes: East-Tallinn

Central Hospital
‡‡

 web site and Rakvere hospital web site
§§

,

• Estonian News Portal Delfi

,

• Estonian News Portal Postimees
†††

,

• Estonian Business News Portal Aripaev
‡‡‡

,

• National Aeronautics and Space Administration (NASA) web page
§§§

,

• CNN news portal

,

• BBC news portal
††††

.

All web applications under study have different WUI design, target users and categories. All

of the aforementioned applications are based on HTML, JavaScript and CSS technologies and,

thus, can be evaluated by Guideliner.

To prove the viability of the Guideliner approach, a set of 98 predefined usability guidelines

was used that covers most elements of WUI including Links, Tags and Text Appearance (see

Table 2 for more details). The set of guidelines contains 55 accessibility guidelines, 23 common

usability guidelines suitable for desktop and mobile devices and 20 usability guidelines suitable

only for mobile devices. The conformance of WUIs to usability has been automatically

performed on Chrome version 65.0.3325.181. All 98 selected usability guidelines were defined

using usability ontology presented in Section 3.2.

In order to conduct an experiment, a special Java program has been created that uses

Guideliner REST API for initiating the evaluation process (URL of web application under study

was used as a request parameter) and for storing Guideliner evaluation responses to database for

further processing. The stored data contains the evaluated guidelines, evaluation result status,

* https://www.mnt.ee/eng
† https://www.eesti.ee/en/
‡ http://www.rkas.ee/en
§ https://riha.eesti.ee/riha/main
** https://www.etis.ee/?lang=ENG
†† https://www.ria.ee/en/
‡‡ http://www.itk.ee/en
§§ http://www.rh.ee/
*** http://www.delfi.ee/
††† https://www.postimees.ee/
‡‡‡ http://www.aripaev.ee/
§§§ https://www.nasa.gov/
**** http://edition.cnn.com/
†††† https://www.bbc.co.uk/

https://www.mnt.ee/eng
https://www.eesti.ee/en/
http://www.rkas.ee/en
https://riha.eesti.ee/riha/main
https://www.etis.ee/?lang=ENG
https://www.ria.ee/en/
http://www.itk.ee/en
http://www.rh.ee/
http://www.delfi.ee/
https://www.postimees.ee/
http://www.aripaev.ee/
https://www.nasa.gov/
http://edition.cnn.com/
https://www.bbc.co.uk/

104

WUI URL and data of WUI elements that violated the guidelines, including the violation reason

and the text of the element.

Table 2. Categories of usability guidelines for the established usability ontology

Category Mobile Common Accessibility Total

Organization of information and

content
2 8 5 15

Tag attributes 0 0 14 14

Links 4 3 3 10

Screen-based controls 7 3 0 10

Tags 0 0 6 6

Radio Button 1 2 3 6

Text Appearance 0 0 6 6

Checkbox 0 2 3 5

Heading 0 0 5 5

Button 4 0 0 4

Text Appearance 0 3 0 3

Graphics, images and

multimedia
0 1 2 3

Select 0 1 2 3

Scrolling 2 0 0 2

Password input 0 0 2 2

File 0 0 2 2

Textarea 0 0 2 2

Overall 20 23 55 98

Table 3 presents the results of the evaluation, pointing out the number of guidelines violated

by each web application. The experiment's results show that the accessibility guidelines were

most commonly violated by WUIs under study.

The most frequently occurred violations were documented during the testing for each web

application. The guideline stating that The width of the link should be at least 48 pixels for

mobile devices presented was violated by every WUI under study. Another usability guideline

that was violated by all WUIs under study was The distance between links should be at least 30

pixels for mobile devices. The most violated common usability guidelines were the guidelines

checking the contrast ratio of the elements of WUI.

The common problem of most WUIs under study is small size and the wrong contrast ratio of

clickable elements (links, buttons). Such violations complicate text reading and navigation

between web pages for people, including those with color blindness or other visual impairments.

Really, that should be avoided, especially on governmental web applications. In particular, the

small size of clickable elements and the insufficient distance between elements was detected on a

mobile platform. In fact, these guidelines are even more critical on the mobile platform as small

or closely located clickable elements are more complex for users to tap accurately on a

touchscreen than with a common mouse. The common rule for the size of links and buttons is

based on the research done by Google
*
 – the most critical links and buttons should be at least 48

48 CSS pixels wide and there should not be any other tap targets within 7 mm either horizontally

or vertically. These guidelines were violated by every WUI under study on a mobile platform.

* https://developers.google.com/speed/docs/insights/SizeTapTargetsAppropriately

https://developers.google.com/speed/docs/insights/SizeTapTargetsAppropriately

105

Table 3. Results of usability evaluation executed on various WUIs

Web Application
Mobile

Usability

Common

Usability
Accessibility Total

https://www.ria.ee/en/ 7 4 8 19

https://www.postimees.ee/ 6 6 10 22

https://www.nasa.gov/ 7 3 9 19

https://www.mnt.ee/eng 7 5 8 20

https://www.etis.ee/?lang=ENG 6 7 12 25

https://www.eesti.ee/en/ 6 3 7 16

https://www.aripaev.ee/ 6 6 13 25

https://riha.eesti.ee/riha/main 2 2 6 10

http://www.rkas.ee/en 7 3 10 20

http://www.rh.ee/ 6 5 10 21

http://www.itk.ee/en 4 4 8 16

http://www.delfi.ee/ 8 6 13 27

http://www.bbc.com/ 7 6 8 21

http://edition.cnn.com/ 8 6 12 26

The evaluation of Guideliner proved that the taken approach with usability ontology is feasible

and provides enough functionality for describing different types of usability guidelines including

mobile, common and accessibility guidelines for WUI evaluation. The UI Evaluation Component

that used guidelines defined in ontology to perform the evaluation was able to handle and

process guidelines described in the ontology, and no run-time errors occurred. The component

successfully carried out the evaluation of different aspects of WUI such as layout and element

positioning, contrast rate, HTML-validity and so forth. Overall, there were no exceptions thrown

up during the evaluation of Guideliner. All evaluation responses were properly structured

containing relevant information about violations detected in the code, such as the description and

the text of the element.

5 Work in Progress

The Estonian Information Systems Authority
*

 (RIA), responsible for development of

governmental portals in Estonia, showed a great interest into Guideliner and thus it was

introduced to their development process with the purpose to integrate Guideliner to evaluate the

usability of Estonian eGovernment components. RIA coordinates the development and

administration of Estonian State Portal
†
.

For the first phase of the integration, we studied the Estonian State Portal (ESP) – eesti.ee,

which is the primary gateway to public information and services in Estonia. It is a secure Internet

environment that the residents of Estonia use to access the state’s information, services and

portals. The main reason why Estonian State Portal was selected for our research is because it is

the most popular public governmental portal with more than 40 Million visits during the year

2016 as stated in [36]. The UI of ESP is based on HTML, CSS and JavaScript technologies.

The main motivation for integrating automated usability and accessibility evaluation into the

RIA development process is to check automatically the compliance of the portal UI to WCAG

standards. The conformance to WCAG became an even more critical requirement after the

directive, on making websites and mobile apps of public sector bodies more accessible, was

* RIA, https://www.ria.ee/en/
† Estonian State Portal, https://www.eesti.ee/eng

https://www.ria.ee/en/
https://www.postimees.ee/
https://www.nasa.gov/
https://www.mnt.ee/eng
https://www.etis.ee/?lang=ENG
https://www.eesti.ee/en/
https://www.aripaev.ee/
https://riha.eesti.ee/riha/main
http://www.rkas.ee/en
http://www.rh.ee/
http://www.itk.ee/en
http://www.delfi.ee/
http://www.bbc.com/
http://edition.cnn.com/
https://www.ria.ee/en/
https://www.eesti.ee/eng

106

introduced on 26 October 2016 (Directive (EU) 2016/2102 of the European Parliament and of

the Council of 26 October 2016 on the accessibility of the websites and mobile applications of

public sector [37]). The main purpose of this directive is to encourage all governmental

applications to be more accessible by people with disabilities, by increasing the importance of

following WCAG standard guidelines.

Despite the fact that there are multiple existing solutions for checking conformance to the

WCAG standard (e.g. AChecker [15] and Mauve [14]), there are no solutions that could be

integrated into the RIA development process that entirely suit their development model. For

instance, both AChecker and Mauve are distributed as standalone web applications requiring a

separate server with special configurations (AChecker requires Apache server with preinstalled

PHP environment), where they could be deployed. Such an approach does not comply with the

RIA development process requiring that tools for automated usability evaluation could be built

and run as a part of development process and executed every time developers commit changes to

the source code of applications. Guideliner addresses the disadvantages of existing solutions by

supporting integration into web UI development process, enabling implementation-time usability

evaluation.

Figure 9 demonstrates the view of the ESP home page containing the most popular sections of

the web application. The UI is designed using a responsive web design approach and adapts to

the size of the screen it is viewed on. This means that the positions of elements, their size and

design, vary across devices ensuring high usability for every device.

Figure 9. Screenshot of Estonian State Portal containing the most popular sections of the web application

In cooperation with RIA quality assurance team and designers, we concluded that integration

of the framework for the evaluation of UI compliance to usability guidelines (especially WCAG

guidelines) is beneficial for the RIA. Based on the feedback provided, we extended designed

ontology by dividing all guidelines into subgroups like WCAG and Section 508 guidelines. Such

an approach allows the evaluation of UI conformance only to the selected group of guidelines,

not to all of them.

6 Conclusions

Automated usability evaluation is an emerging trend to optimize labour-intensive and time-

consuming process of manual usability evaluation. It is achieved through the use of tools capable

of automatically evaluating WUI against the conformance to usability guidelines.

In order to tackle the problem of design-time usability evaluation, we deliver a system called

Guideliner that enables automated evaluation of conformance to usability guidelines (both

107

HTML-centric and visual usability guidelines) during design phase of WUI development. Also,

Guideliner provides possibility to perform usability pre-release testing verifying that all

developed features are compliant with usability guidelines. In general, Guideliner increases the

overall quality of developed WUIs as it performs the evaluation of both HTML-specific and

visual usability guidelines. Even further, the applicability of Guideliner does not stick to any

particular WUI development process (e.g., agile or waterfall) but rather it is a universal tool

challenging a problem of immediate usability evaluation.

A major contribution of this work is the domain ontology for storing usability knowledge. The

ontology design allows to define custom usability guidelines as necessary, and thus extend

Guideliner also for specific use cases. The usability ontology is proposed as a solution to

overcome the limitations of existing approaches suffering from inability to define visual usability

guidelines; and presents an alternative method to define usability guidelines in a machine-

processable form, yet in a human-understandable way.

In summary, our tool Guideliner is capable of evaluating HTML and JavaScript based web

user interfaces without additional configurations and check their compliance to the WCAG and

Section 508 standards, as well as to best practices and recommendations for UI design

introduced in scientific publications and various usability researches. Presently it supports 98

essential usability guidelines, and we continue adding new ones.

References

[1] International Organization for Standardization: ISO 9241-210:2010 Ergonomics of human-system interaction

Part 210: human-centred design process for interactive systems, 2010.

[2] Web Content Accessibility Guidelines. [Online]. Available: http://www.w3.org/WAI/intro/wcag

[3] Section 508. [Online]. Available: https://www.section508.gov/

[4] User Experience for Mobile Applications and Websites. [Online]. Available:

https://www.nngroup.com/reports/mobile-website-and-application-usability/

[5] Navigation and Page Layout. [Online]. Available: https://www.nngroup.com/reports/intranet-navigation-

layout-and-text/

[6] J. Nielsen and H. Loranger, Prioritizing web usability. Pearson Education, 2006.

[7] E. Kock, J. Biljon, and M. Pretorius, “Usability evaluation methods: mind the gaps,” Proceedings of the 2009

Annual Research Conference of the South African Institute of Computer Scientists and Information

Technologists, ACM, pp.122–131, 2009. Available: https://doi.org/10.1145/1632149.1632166

[8] M. Y. Ivory and M. Hearst, “The state of the art in automating usability evaluation of user interfaces,” ACM

Comput. Surv., vol. 33, pp. 470–516, 2001. Available: https://doi.org/10.1145/503112.503114

[9] J. O. Bak, K. Nguyen, P. Risgaard, and J. Stage, “Obstacles to usability evaluation in practice: a survey of

software development organizations,” Proceedings of the 5th Nordic conference on Human-computer

interaction, ACM, pp. 23–32, 2008. Available: https://doi.org/10.1145/1463160.1463164

[10] A. Häkli, “Introducing user-centered design in a small-size software development organization.” M.S. thesis,

Department of Computer Science and Engineering, Helsinki University of Technology, Helsinki, 2005.

[11] F. Lizano, M. M. Sandoval, A. Bruun, and J. Stage, “Is Usability Evaluation Important: The Perspective of

Novice Software Developers,” Proceedings of the 27th International BCS Human Computer Interaction

Conference, Article 31, British Computer Society, Swinton, 2013.

[12] E-Commerce User Experience. [Online]. Available: https://www.nngroup.com/reports/ecommerce-user-

experience/

[13] A. Dingli and J. Mifsud, “Useful: A framework to mainstream web site usability through automated

evaluation,” International Journal of Human Computer Interaction (IJHCI), vol. 2, no. 1, p. 10, 2011.

[14] A. G. Schiavone and F. Paterno, “An extensible environment for guideline-based accessibility evaluation of

dynamic Web applications,” Journal Universal Access in the Information Society, pp. 111–132, 2015.

http://www.w3.org/WAI/intro/wcag
https://www.section508.gov/
https://www.nngroup.com/reports/mobile-website-and-application-usability/
https://www.nngroup.com/reports/intranet-navigation-layout-and-text/
https://www.nngroup.com/reports/intranet-navigation-layout-and-text/
https://doi.org/10.1145/1632149.1632166
https://doi.org/10.1145/503112.503114
https://doi.org/10.1145/1463160.1463164
https://www.nngroup.com/reports/ecommerce-user-experience/
https://www.nngroup.com/reports/ecommerce-user-experience/

108

[15] J. Marenkov, T. Robal, and A. Kalja, “A framework for improving web application user interfaces through

immediate evaluation,” Databases and Information Systems, vol. 291, pp. 283 – 296. IOS Press, 2016.

Available: https://doi.org/10.3233/978-1-61499-714-6-283

[16] World Wide Web Consortium W3C, 2010b. Web Accessibility Initiative (WAI). [Online]. Available:

http://www.w3.org/WAI/intro/accessibility.php

[17] A. Dingli, “USEFul: A Framework to Mainstream Web Site Usability,” International Journal of Human

Computer Interaction, pp. 10–30, 2011.

[18] A. Dingli and S. Cassar, “An intelligent framework for website usability,” Advances in Human-Computer

Interaction, Article 5, 2014. Available: https://doi.org/10.1155/2014/479286

[19] B. Leporini, F. Paterno, and A. Scorcia, “Flexible tool support for accessibility evaluation,” Interacting with

Computers, vol. 18(5), pp. 869–890, 2006. Available: https://doi.org/10.1016/j.intcom.2006.03.001

[20] G. Gay and C. Q. Li, “AChecker: open, interactive, customizable, web accessibility checking,” Proceedings of

the 2010 International Cross Disciplinary Conference on Web Accessibility (W4A), ACM, p. 23, 2010.

Available: https://doi.org/10.1145/1805986.1806019

[21] P. A. Davis and F. M. Shipman, “Learning usability assessment models for web sites,” Proceedings of the 16th

international conference on Intelligent user interfaces, ACM, pp. 195–204, 2011. Available:

https://doi.org/10.1145/1943403.1943433

[22] B. C. Boza, S. Schiaffino, A. Teyseyre, and D. Godoy, “An approach for knowledge discovery in a web

usability context,” Proceedings of the 13th Brazilian Symposium on Human Factors in Computing Systems,

pp 393–396, 2014.

[23] M. A. A. Winckler, C. M. D. S. Freitas, and J. V. De Lima, “Usability remote evaluation for WWW,” CHI '00

Extended Abstracts on Human Factors in Computing Systems (CHI EA '00), ACM, pp. 131–132, 2000.

Available: https://doi.org/10.1145/633292.633367

[24] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting usability defects: do reporters report what software

developers need?” Proceedings of the 20th International Conference on Evaluation and Assessment in

Software Engineering, ACM, pp. 1–10, 2016. Available: https://doi.org/10.1145/2915970.2915995

[25] S. Davies and M. Roper, “Whatʼs in a Bug Report?” Proceedings of the 8th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, Article 26, ACM, 2014. Available:

https://doi.org/10.1145/2652524.2652541

[26] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects: Limitations of Open Source Defect

Repositories and Suggestions for Improvement,” Proceedings of ASWEC Australasian Software Engineering

Conference, ACM, pp. 38–43, 2015. Available: https://doi.org/10.1145/2811681.2811689

[27] J. Marenkov, T. Robal, and A. Kalja, “A Tool for Design – Time Usability Evaluation of Web User

Interfaces,” in Kirikova M., Nørvåg K., Papadopoulos G. (eds.) Advances in Databases and Information

Systems. Lecture Notes in Computer Science, Springer, vol. 10509, 2017. Available:

https://doi.org/10.1007/978-3-319-66917-5_26

[28] E. Ernst, “Separation of concerns,” Proceedings of the AOSD 2003 Workshop on Software-Engineering

Properties of Languages for Aspect Technologies (SPLAT), Boston, MA, USA. 2003.

[29] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge sharing?” International

journal of human-computer studies, vol. 43(5–6), pp. 907–928, 1995. Available:

https://doi.org/10.1006/ijhc.1995.1081

[30] L. Yu, “A developer’s guide to the semantic Web,” Springer Science & Business Media, 2011. Available:

https://doi.org/10.1007/978-3-642-15970-1

[31] J. Xiong, C. Farenc, and M. Winckler, “Towards an ontology-based approach for dealing with web

guidelines,” Proceedings of the International Conference on Web Information Systems Engineering, Springer,

pp. 132–141, 2008. Available: https://doi.org/10.1007/978-3-540-85200-1_15

[32] T. Robal, J. Marenkov, and A. Kalja, “Ontology design for automatic evaluation of web user interface

usability,” in Portland International Conference on Management of Engineering and Technology (PICMET),

IEEE , pp. 1-8, 2017. Available: https://doi.org/10.23919/picmet.2017.8125425

[33] M. Horridge and S. Bechhofer, “The OWL API: A Java API for OWL ontologies,” Semantic Web, vol. 2,

pp. 11–21, 2011.

https://doi.org/10.3233/978-1-61499-714-6-283
http://www.w3.org/WAI/intro/accessibility.php
https://doi.org/10.1155/2014/479286
https://doi.org/10.1016/j.intcom.2006.03.001
https://doi.org/10.1145/1805986.1806019
https://doi.org/10.1145/1943403.1943433
https://doi.org/10.1145/633292.633367
https://doi.org/10.1145/2915970.2915995
https://doi.org/10.1145/2652524.2652541
https://doi.org/10.1145/2811681.2811689
https://doi.org/10.1007/978-3-319-66917-5_26
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1007/978-3-642-15970-1
https://doi.org/10.1007/978-3-540-85200-1_15
https://doi.org/10.23919/picmet.2017.8125425

109

[34] D. Tsarkov and I. Horrocks, “FaCT++ Description Logic Reasoner: System Description,” Proceedings of the

Third international joint conference on Automated Reasoning, Springer, pp. 292–297, 2006. Available:

https://doi.org/10.1007/11814771_26

[35] D. Beyer, “Status report on software verification,” Proceeding of the International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science, Springer, vol

8413, pp. 373–388, 2014. Available: https://doi.org/10.1007/978-3-642-54862-8_25

[36] The State Portal eesti.ee in numbers. (2017, November 24). [Online]. Available:

https://www.eesti.ee/eng/topics/business/riigiportaali_abi/partnerile_1/eesti_ee_2016_aasta_statistika

[37] Directive (EU) 2016/2102 of the European Parliament and of the Council of 26 October 2016 on the

accessibility of the websites and mobile applications of public sector bodies. (2017, November 24). [Online].

Available: https://eur-lex.europa.eu/homepage.html

https://doi.org/10.1007/11814771_26
https://doi.org/10.1007/978-3-642-54862-8_25
https://www.eesti.ee/eng/topics/business/riigiportaali_abi/partnerile_1/eesti_ee_2016_aasta_statistika
https://eur-lex.europa.eu/homepage.html

