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Abstract. Achieving interoperability, i.e. creating identity federations
between different Electronic identities (eID) systems, has gained relevance
throughout the past years. A serious problem of identity federations is the
missing harmonization between various attribute providers (APs). In closed
eID systems, ontologies allow a higher degree of automation in the process
of aligning and aggregating attributes from different APs. This approach
does not work for identity federations, as each eID system uses its own
ontology to represent its attributes. Furthermore, providing attributes to
intermediate entities required to align and aggregate attributes potentially
violates privacy rules. To tackle these problems, we propose the use
of combined ontology-alignment (OA) approaches and locality-sensitive
hashing (LSH) functions. We assess existing implementations of these
concepts defining and using criteria that are special for identity federations.
Obtained results confirm that proper implementations of these concepts
exist and that they can be used to achieve interoperability between eID
systems on attribute level. A prototype is implemented showing that
combining the two assessment winners (AlignAPI for ontology-alignment
and Nilsimsa for LSH functions) achieves interoperability between eID
systems. In addition, the improvement obtained in the alignment process
by combining the two assessment winners does not impact negatively the
privacy of the user’s data, since no clear-text data is exchanged in the
alignment process.
Keywords: Interoperability, ontologies, ontology alignment, LSH
functions, privacy.

1 Introduction

Electronic identities (eID) have become a critical concept of electronic services from both
the private and the public sector. For instance, e-government solutions use eIDs to identify
and authenticate citizens in online governmental processes. In most cases, an eID is a
unique number that is assigned to a user and unambiguously identifies this user. A typical
identification/authentication process involves several entities. The Identity Provider (IdP)
establishes, maintains, and secures the electronic identity associated with a user, and verifies
the identity of that user. The Relying Party (RP) makes transaction decisions based on receipt,
validation, and acceptance of a user’s authenticated credentials and attributes within the Identity
System (IS). For instance, a Service Provider (SP), which, e.g. provides an e-government service,
can assume the role of the relying party.



In most identity systems, identity attributes are used together with the eID of a user. For instance,
during an identification/authentication process, the relying party might additionally be provided
with the user’s name and date of birth. From a conceptual perspective, identity attributes are
provided by Attribute Providers (APs). In practice, identity provider and attribute provider can
also be represented by one and the same entity.

The successful application of electronic identities requires that user, identity provider, and
relying party are part of the same identity system. Recalling the e-government example, eIDs
assigned to citizens by a national government can only be used to identify and authenticate at
relying parties from the same country. As this is a significant limitation, several attempts have
been made during the past years to achieve interoperability between different identity systems,
i.e. to establish an eID federation. In Europe, the eIDAS Regulation1 and the EU large-scale
pilots STORK2 and STORK 2.03 have, for instance, successfully established eID interoperability
between EU member states (MS). As a result, citizens from MSA can use their national eID to
identify and authenticate at service providers from MSB and vice versa.

While there have been significant advances in eID interoperability and in creating eID
federations in the past years, the role of eID attributes has often been neglected. In most cases,
interoperability of eID attributes is implicitly assumed. For instance, interoperability solutions
developed by STORK and STORK 2.0 rely on a common set of attributes shared by all
participating countries. Unfortunately, this is an oversimplification that does often not reflect
reality. In practice, there is usually no harmonization between attribute providers of different
identity systems. This lack of harmonization raises problems, if attribute providers from different
identity systems store attributes of one and the same user. In this case, attributes from different
identity systems potentially need to be aligned and aggregated during identification/authentication
processes.

Within a single identity system, the problem of aligning and aggregating attributes from different
attribute providers can be tackled by defining a common ontology for attributes. In scenarios that
involve multiple identity systems and hence require attribute interoperability, this approach does
not work for two reasons. First, each identity system typically uses its own specific ontology to
represent eID attributes, which prevents a direct aligning or aggregation of attributes. Second,
aligning and aggregating attributes requires an intermediate entity that performs these tasks.
Exposing attributes to this entity might violate defined privacy rules.

To tackle these issues and to allow the aligning and aggregation of attributes in eID federations,
new ground has to be broken. In this paper, we, therefore, propose the use of ontology-alignment
(OA) solutions and locality-sensitive hashing (LSH) functions. We show how these two
technologies can be used for the concrete problem given, derive relevant assessment criteria,
survey existing implementations of these technologies, and assess these implementations using
the assessment criteria derived. We also present results obtained in a prototype implementation
using the winner solutions of our evaluation. This way, this paper represents a major step towards
privacy-preserving attribute aggregation in federated eID systems.

This paper is structured as follows: Section 2 describes and analyses the problem addressed.
Section 3 presents a survey of the building blocks proposed to solve the problem, while
Sections 4 and 5 describe, respectively, the definition of the assessment criteria and the assessments
performed. Section 6 shows the developed prototype and presents findings obtained from its
implementation. Finally, Section 7 concludes this article and addresses remaining issues as well as
possible future research directions.

1 https://ec.europa.eu/digital-single-market/en/trust-services-and-eid
2 https://www.eid-stork.eu/
3 https://www.eid-stork2.eu/
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2 Problem Analysis

The problem addressed in this paper is illustrated in Figure 1. Assume a relying party needs to
access attributes from two attribute providers (e.g. APA and APB) from different identity systems
(e.g. ISA and ISB). Assume further that the two attribute providers and the relying party all use
different ontologies to represent attributes. Hence, the relying party cannot directly retrieve and use
required attributes from the two attribute providers. To achieve attribute interoperability, the relying
party relies on an Aligning Entity (AE) that acts as an intermediary between the relying party
and the two attribute providers. The aligning entity can be regarded as a special kind of identity
provider or attribute provider used by the relying party. It obtains attributes from different attribute
providers, aligns and aggregates these attributes, and provides a consolidated set of attributes to
the relying party.

Figure 1. General architecture

To accomplish these tasks, the aligning entity needs to solve two problems. First, it must be
able to handle different ontologies used by attribute providers from different identity systems
(e.g. OA and OB). This ability is necessary, as the relying party and both attribute providers rely
on different ontologies. Second, the aligning entity must not request more attributes from the two
attribute providers in plain text (e.g. PtA and PtB) than originally requested by the relying party,
to consider defined minimum-disclosure rules. Complying with the minimum-disclosure rules is a
considerable challenge, as the aligning entity might require additional attributes to successfully
handle different ontologies. If the aligning entity manages to solve these two fundamental
problems, it can align and aggregate attributes represented by different ontologies while preserving
privacy by maintaining defined minimum-disclosure rules concerning attributes.

In this paper, we propose the use of two different technologies to solve the problems
defined above. We propose the use of ontology-alignment solutions and locality-sensitive hashing
functions. In the following subsections we elaborate on these two technologies, motivate their use
in the context of the problem defined, and discuss relevant related work.

2.1 Ontology-Alignment Solutions

Ontologies are a useful concept to facilitate the use of attributes from different attribute providers.
Especially in closed eID systems, ontologies work well for this purpose, as they allow a higher

83



degree of automation in the process of aligning and aggregating attributes from different attribute
providers. However, a certain level of harmonization between different attribute providers is a
mandatory requirement for the successful application of ontologies. In particular, all attribute
providers need to use the same ontology, to assure that attributes represented by these ontologies
can be aligned and aggregated. This degree of harmonization is usually not provided by attribute
providers from different eID systems, as several identity systems usually use different ontologies
to represent eID data and attributes. An intermediate entity is required to address this issue. This
entity translates attribute ontologies into a form that can be understood by the relying party. In
Figure 1, the aligning entity assumes the role of this entity.

In principle, the aligning entity can follow two approaches to achieve attribute interoperability
between attribute providers and the relying party. First, following the ontology-merging approach,
ontologies used by attribute providers are merged to a new ontology that is supported by the
relying party. Nacer [1] discusses ontology-merging solutions in more detail. Second, following
the ontology-alignment approach, the aligning entity creates an alignment describing the relation
between different ontologies. In the example shown in Figure 1, the aligning entity would create an
alignment that describes the mapping between the ontologies used by the two attribute providers
and the one used by the relying party. When the relying party requests attributes from the attribute
providers, the aligning entity uses the created alignment to transform attributes from the attribute
providers into attributes that can be understood by the relying party.

In general, the ontology-alignment approach provides a higher degree of efficiency and
flexibility. We hence focus on this approach for our solution. Section 3 surveys existing
ontology-alignment solutions and implementations.

2.2 Locality-Sensitive Hash Functions

To be able to provide attributes to the relying party, the aligning entity potentially needs
more attributes from the attribute providers than originally requested by the relying party.
For instance, the aligning entity might need additional attributes to unambiguously identify a
user. Unfortunately, requesting additional attributes from attribute providers potentially violates
minimum-disclosure rules and hence reduces privacy.

To address this issue, we propose the use of locality-sensitive hash (LSH) functions. In contrast
to ordinary hash functions, LSH functions reflect the similarity of input values to derived hash
values. For instance, if inputs I1 and I2 have a similarity of degree S, then also hash values
H1 = LSH(I1) and H2 = LSH(I2) have a similarity of degree S. The special characteristic
of locality-sensitive hashing functions can be used to maintain the privacy of exchanged attributes.
Concretely, attribute providers can provide the aligning entity with hash values of non-requested
attributes instead of plain-text attributes. This way, the aligning entity is provided with the relevant
information to provide the relying party with the attributes requested. Still, attributes not directly
requested by the attribute provider remain unrevealed.

As an alternative to locality-sensitive hashing functions, zero-knowledge proofs [2] or
homomorphic encryption [3] could be used as well. However, locality-sensitive hashing functions
have already proven to be useful and applicable in various fields of application [4], [5].
Accordingly, there are several implementations of this concept. Hence, we focus on this technology
to overcome privacy challenges. Section 3 provides a survey of existing implementations of
locality-sensitive hashing functions.

3 Survey

The problem analysis conducted has revealed that attribute interoperability in eID federations
requires two technologies, i.e. ontology-alignment solutions and locality-sensitive hashing
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functions. In this section we provide an overview of current implementations of these two
technologies. The implementations surveyed will later be assessed using relevant criteria.

3.1 Existing Ontology-Alignment Solutions

An ontology constitutes an agreement for representing a common model to be shared among
entities. This feature enables information exchange in a human-readable and understandable
manner [6]. Ontology-merging and ontology-alignment approaches are used to obtain a common
knowledge representation among entities (e.g. among different attribute definitions of attribute
providers). Two or more ontologies are aligned to enable involved entities to use a common
vocabulary to communicate with each other. The following paragraphs briefly sketch three of the
most commonly used ontology-alignment solutions.

AlignAPI The Alignment API (AlignAPI4) is an API that can be used for representing alignments
and for the development, integration, and composition of matchers. It is available in the Java
programming language and provides examples and basic tools for manipulating alignments [7].
Additionally, the Alignment API provides a set of abstractions for expressing, accessing and
sharing ontology alignments.

The Alignment API’s reference implementation aims at facilitating the development of tools
for manipulating alignments and calling matchers. It can also help matcher developers to deliver
alignments in a well-supported framework [8].

XMAP The XMAP5 ontology matching system is a high-precision system that can perform
matching on large ontologies [9]. A semantic similarity measure is defined using UMLS6 and
WordNet7 to provide a synonymy degree between two concepts in different ontologies, using their
context.

It relies on the Microsoft Translate API8 to work with ontologies in many languages. It exploits
the common elements (at linguistic and at structural levels) from the descriptions to measure the
similarity between two classes and two properties respectively. Figure 2 shows the user interface
of XMAP.

PROMPT PROMPT9 is an algorithm and a tool for merging and aligning ontologies [10]. It
requires direct interaction with the user. The tool takes two ontologies as input [11] and guides the
user through the process of creating a merged/aligned ontology.

Initially, PROMPT creates a previous list of matches considering class names. Afterwards, it
carries out the following steps in a loop:
1. The user interacts by either selecting one of PROMPT’s suggestions or by editing the ontology

to specify the desired operation directly.
2. PROMPT performs the operation, automatically makes the necessary changes based on the type

of operation, generates a list of suggestions for the user based on the last operation, determines
conflicts generated by the last operation, and finds solutions to those conflicts. Figure 3 shows
the user interface of PROMPT.

4 http://alignapi.gforge.inria.fr/
5 http://www.labged.net/index.php?rubrique=mapage38
6 https://www.nlm.nih.gov/research/umls/
7 https://wordnet.princeton.edu/
8 https://www.microsoft.com/en-us/translator/translatorapi.aspx
9 http://protegewiki.stanford.edu/wiki/PROMPT
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Figure 2. Main user interface of XMAP

3.2 Existing Locality-Sensitive Hashing Functions

Locality-sensitive hashing functions map similar objects into the same hash buckets with high
probability. They perform a similarity query on an LSH index in two steps [12]:

1. Selecting candidate objects for a given query q using LSH functions; and
2. Ranking them according to their distances to q.

LSH functions ensure that the collision probability is higher for closer objects (objects with
similar values) than for those that are far (objects with considerably different values) [5], [4]. In
the following paragraphs, we briefly sketch existing implementations of LSH functions.

MinHash MinHash techniques evaluate the similarity of any two sets requiring only a constant
number of comparisons [13]. MinHash works by extracting a representation hk(S) of a set S using
a deterministic sampling. This hk(S) has a constant size k, independent from |S|. The computation
of hk(S) incurs a complexity linear in set sizes.

Nilsimsa Nilsimsa [14] is a locality-sensitive hashing function that takes an arbitrary input and
outputs an n-bit digest. It uses n buckets to count the trigrams that appear in the input and converts
the counts to an n-bit digest. The similarity assessment between two inputs is performed comparing
the corresponding positions of the two Nilsimsa digests and counting the number of equal bits.
The algorithm counts the number of equal bits of the two Nilsimsa digests in the same position to
identify the similarity between two inputs [15]. The higher is the number of equal bits, the more
similar the two documents are.

Trend Locality Sensitive Hashing (TLSH) Summing up the distance10 between the digest
headers and the digest bodies determines the TLSH value. The resulting distance score ranges

10 The distance is evaluated in a process similar to the hamming distance.
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Figure 3. Main user interface of PROMPT

from 0 to 1000+. Digests with a distance ≤ 100 are considered to be similar. Digests with a
distance > 100 shall be regarded as not being similar. The evaluation of the TLSH digest of the
byte string follows these steps [16], [17]:

1. Process the byte string using a sliding window to populate an array of bucket counts.
2. Calculate the quartile points, q1, q2 and q3.
3. Construct the digest header values as a function of

(a) the length of the file,
(b) the quartile points calculated in step (2), and
(c) a checksum.

4. Construct the digest body by processing the bucket array.
5. Generate the output digest by concatenating the digest header from step (3) and the digest body

from step (4).

4 Assessment Criteria

The conducted survey on existing ontology-alignment solutions and locality-sensitive hashing
functions has shown that there is already a variety of implementations available. Unfortunately,
none of these implementations has been developed with the concrete use case of attribute
interoperability in mind. It hence remains unclear, which of the implementations surveyed is best
suited for realizing the aligning entity as depicted in Figure 1. To determine the best available
implementations, we conduct systematic assessments on all solutions surveyed. As preliminary
work, we define criteria in this section that are relevant to the use case given. Surveyed solutions
will later be assessed using these criteria.

Most criteria are intentionally kept on a rather abstract level (e.g. Documentation) to achieve a
common set of criteria applicable to all solutions surveyed. Still, all criteria have been defined such
that they enable assessing surveyed solutions concerning their effectiveness (e.g. Processing Time,
and Mappings Identified) and ease of integration (e.g. Implementation, License).

The effectiveness criteria are used to choose the winner solutions as they express quantitative
metrics about the performance of all solutions.

The following subsections sketch all assessment criteria defined.
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4.1 Common Assessment Criteria

Some of the criteria defined are relevant for both locality-sensitive hashing functions and
ontology-alignment solutions. Most of them are rather non-technical, but still relevant especially
with regard to a solution’s ease of integration. In particular, the following criteria can be regarded
as relevant for both ontology-alignment solutions and locality-sensitive hashing functions.

Documentation This criterion is related to the amount and quality of resources that are available to
provide the knowledge required to apply the respective solution in a specific context. Examples for
suitable resources are Wikipedia entries, project Wiki, web pages, GitHub repositories, or sample
code. A comprehensive documentation is a consistent basis for a successful integration of provided
implementations into own solutions.

Implementation Implementation details, e.g. the programming language used or interfaces
provided, is another relevant criterion that needs to be taken into account, as it influences
the complexity of integrating provided implementations into own solutions. For instance,
implementations relying on popular and widely used programming languages are probably easier
to integrate into own solutions. Furthermore, availability of an API or of well-defined plug-ins can
also increase ease of integration.

License The license of the respective implementation is another relevant criterion, as it defines
limitations in reusing provided functionality for own solutions. Hence, this criterion can also be
regarded as a factor that influences ease of integration.

Processing Time The processing time describes how much time is required to execute a given
task according to the measured smallest value unit such as ms, s. The processing time can be a
relevant criterion if performance and efficiency are important aspects.

4.2 Assessment Criteria for Locality-sensitive Hashing Functions

In addition to the criteria that are relevant for both ontology-alignment solutions and
locality-sensitive hashing functions, several criteria can be identified that are unique for
locality-sensitive hashing functions. The following subsections depict these criteria.

Function Score and Clear-Text Score The Function Score (F-S) and the Clear-Text Score
(CT-S) provide the average and the total, respectively, similarity score in a given test. The values are
computed using the Levenshtein Distance between the values provided as input and are normalized
considering the signature length.

Signature Length The Signature Length represents the output length of the respective
locality-sensitive hashing function. Similar to ordinary hash functions, the output length is usually
fixed. If the solution that aims to integrate locality-sensitive hashing functionality has specific
restrictions, the output length can be a relevant criterion.

Similarity Scale This criterion is related to the result values yielded by the particular solution
to give a metric on the similarity of the evaluated inputs. Usually, each solution uses a different
scale. Common examples are, e.g. [0.0–1.0], [0–10], [128–(-128)], etc. The similarity scale used
and supported can be a relevant criterion when integrating the respective implementation into an
own solution.

Restrictions This criterion is defined to provide some specific conditions on using the evaluated
implementation. The values are textual descriptions of these particularities, which might be
relevant for solutions that aim to rely on restricted implementations.

4.3 Assessment Criteria for Ontology-Alignment Solutions

Finally, specific assessment criteria can be defined for ontology-alignment solutions as well. The
following paragraphs describe them in more detail.
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Similarity Scores The Similarity Scores provide the values, considering the Similarity Scale of
the evaluated solution, obtained from the assessment, e.g. 1.0, 0.85. They provide feedback on how
much certainty the solution has on an identified mapping.

Mappings Identified The Mappings Identified metric provides the absolute number of
correspondences on both evaluated ontologies. It is useful to identify the total amount of concepts
that have a correspondence on evaluated ontologies.

5 Assessment Results

In this section the assessment criteria defined in Section 4 are mapped to the solutions surveyed
in Section 3. This way, those solutions are identified that satisfy best relevant requirements and
are hence best suited to be used for realizing Aligning Entities in eID federations as depicted in
Figure 1. The results’ evaluation considers the best ontology alignment solution, which promotes
the interoperability. Moreover, it also considers the best locality-sensitive hashing function, which
improves the ontology alignment step. The following subsections present the assessments results
obtained.

5.1 Assessment Results of Ontology-Alignment Solutions

All surveyed ontology-alignment solutions come with diverse sources of documentation
(e.g. OD – online documentation, T – tutorial, WP – web page, W – WikiPedia). Furthermore, all
surveyed implementations are available either as Java APIs or as Protégé Plugins. They have been
published either under GNU Lesser General Public License (LGPL) or Mozilla Public License
(MPL). All results concerning available documentation and implementation are summarized in
Table 1. It is important to notice that the XMAP solution does not provide any information about
licensing on its web page.

Table 1. Documentation, Implementation, and License assessments

Solution Documentation Implementation License
AlignAPI OD, T Java API LGPL

PROMPT W Java API, Protégé Plugin MPL

XMAP WP (last update 2011) Protégé Plugin N/A

In addition to comparing the ontology-alignment solutions surveyed by means of their meta
information as depicted in Table 1, we also ran some tests to compare their effectiveness and
efficiency. The tests loaded the two eID-related ontologies, O1 and O2, and verified the obtained
matches. These tests considered each concept and class, according to the particular solution’s
implemented approach. The two ontologies used have had the same concepts, but four of them
had been written with similar terms, namely: eMail↔ e-mail; dateOfBirth↔ birthDay; surname
↔ lastName; and givenName↔ name. Since the ontologies O1 and O2 present previously known
similar terms, we were able to verify the accuracy of each ontology-alignment solution. Results
obtained are summarized in Table 2. At this point, it is important to note that the performance of
the solution XMAP could not be assessed in detail, as no successful alignment process could be
completed.

In addition to measuring their accuracy, we also used the tests executed on the surveyed solutions
to investigate their processing time. Running the test with the ontologies O1 and O2 (both available
online as storkPerson11 and storkPerson112) has shown that the solution AlignAPI is 2.75 times
faster than ontology-alignment solution PROMPT.
11 http://web.tecnico.ulisboa.pt/walter.filho/ontologies/STORK/storkPerson.owl
12 http://web.tecnico.ulisboa.pt/walter.filho/ontologies/STORK/storkPerson1.owl
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Significant differences between the two solutions AlignAPI and PROMPT have also been
obtained regarding the number of matchings found. Running tests with the two ontologies O1 and
O2 yielded 22 matchings found by the AlignAPI and only one match found by PROMPT. These
results are also reflected by Table 2.

Summarizing the results obtained from assessing the surveyed ontology-alignment solutions, it
follows that AlignAPI is the most suitable solution. This solution outperforms other alternatives
regarding performance and ease of integration.

Table 2. Processing time, Similarity Scores, and Matchings assessments

Solution Processing Time Similarity Scores Matchings Identified
AlignAPI 1.467s 0.96807 22

PROMPT 4.036s Not provided 1

XMAP Not finished N/A N/A

5.2 Assessment Results of Locality-Sensitive Hashing Functions

Similar to the ontology-alignment solutions, all surveyed locality-sensitive hashing functions
provide diverse sources of documentation (e.g. G – GitHub, S – Sample Code, W – WikiPedia).
They are available in several programming languages like Java, Python, Ruby, PHP, Go, C
(Group 1); and C++, C# (Group 2). All surveyed solutions are available under Apache License
(AL). The Similarity Scale13 of each solution was evaluated as well. Obtained results are
summarized in Table 3.

Table 3. Documentation, Implementation, License, and Similarity Scale assessments

Solution Documentation Implementation License Sim. Scale
MinHash GSCW Group 1 AL 0 - 10

Nilsimsa GSCW Group 1 + Group 2 AL 128 - (-128)

TLSH GitHub Python, Java, JS AL 0 - 200 / 0 - 400

Again, we did not limit our assessments and comparisons to the criteria covered by Table 3. We
also ran tests to assess the performance of the different solutions. Note that the TLSH14 function
is unable to produce results on inputs with a size smaller than 256 bytes. This feature makes this
solution unsuitable for use cases related to eID attributes, as eID attributes are potentially rather
short. For this reason, TLSH was precluded from further performance assessments.

Four tests have been defined and run to assess the performance of the remaining two
locality-sensitive hashing solutions. All four tests used the two locality-sensitive hashing solutions
to compute hash values from user names, i.e. a typical eID attributes. A set of 1,000 records with
random data (such as given name, family name, birthday) was generated and used to run these
tests. For each test, slightly different input values have been used as defined below:
Test 1: The same full user name was provided to both of the two locality-sensitive hashing
solutions.
Test 2: Solution A was provided with the full user name. Solution B was provided with the same
full user name but using some abbreviation within the name.

13 The similarity scale of TLSH function can vary depending on the signature’s size. For signatures with
size 70, it goes from 0–200. Moreover, for signatures with size 134, it goes from 0–400.

14 https://github.com/trendmicro/tlsh

90



Test 3: A set of 1,000 same full user names was provided to both of the two locality-sensitive
hashing solutions.
Test 4: Solution A was provided with a set of 1,000 full user names. Solution B was provided with
the same full user names but using some abbreviations within the names.

Execution of Test 1 allowed obtaining the metrics of each function performing the analysis of
just one element with a full match. It represents the scenario where a user authenticates providing
its data and the attribute provider compares data provided with unique user data it has already
stored. Test 2 provides a similar metric but considers similar values, not the exact values on both
sides. Test 3 provides a similar result of Test 1 but uses a set of 1,000 records on the attribute
provider. This way, Test 3 demonstrates how the assessed functions perform in a situation that is
close to a real-world scenario. The same applies to Test 4, which combines the specifics of Test 2
and Test 3. Table 4 shows the results obtained from running theses tests.

Table 4. Test results for LSH Functions MinHash and Nilsimsa

Solution
Test 1 Test 2 Test 3 Test 4

Time F-S C-S Time F-S C-S Time F-S C-S Time F-S C-S
MinHash 90.730 0.941 0 94.080 0.941 5 597.4 0.847 0 518.7 0.847 0.288

Nilsimsa 2.074 0.000 0 3.169 0.560 5 278.5 0.000 0 327.0 0.667 0.288

The processing time of the locality-sensitive hashing function Nilsimsa was from 43x (Test1)
to 1.6x (Test 4) faster than the processing time of the MinHash function. Beside processing time,
the relation between the similarity of input values and output values is another relevant quality
measure for LSH functions. We used the Levenshtein Distance (LD) to estimate the similarity of
input values and output values. Results obtained show that the Nilsimsa LSH function yielded
closer values to the LD of input text than the MinHash LSH function. For Test 1 and Test 3, the
Nilsimsa’s Function Score (F-S) was the same in both tests. For Test 4, the result of the Nilsimsa
LSH function was 25% closer than the results of the MinHash function. This is also reflected by
Table 4.

From the assessment results of the surveyed locality-sensitive hashing Functions shown in
Table 4, it can be concluded that Nilsimsa is the clear winner. This LSH solution outperforms other
surveyed and assessed solutions and complies best with relevant assessment criteria identified.

6 Prototype

To evaluate the feasibility of the identified winner solutions, we have developed a proof-of-concept
prototype implementation.

6.1 Implementation

The implementation realizes the two entities, relying party and attribute provide,r as illustrated
in Figure 4 using RESTful Web Services (WS) written in Java using the JAX-RS RESTful
API15. Our implementation focuses on the relying party and attribute provider intentionally.
Implementation of the intermediate gateways is regarded trivial. Respective solutions are already
available, e.g. STORK [18].

In the presented implementation, the AlignAPI performs the Ontology Alignment (First Step),
and the Nilsimsa locality-sensitive hashing function blinds attribute values (Second Step) used to
increase the level of assurance on the obtained alignment. Additionally, the prototype uses the

15 https://jersey.java.net/index.html
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Figure 4. Communication overview

ontop16 platform because it provides an interface between the ontologies used and the data stored
in the database, enabling to query ontologies using SPARQL.
Step 1: Ontology Alignment In the Ontology Alignment step, the relying party submits its
ontology (ORP ) to the attribute provider. The attribute provider uses AlignAPI to align ORP with its
own ontology yielding OALIGN = OAP ∩ ORP . This alignment produces a Resource Description
Framework (RDF) file. The RDF file contains all attribute-name pairs and their corresponding
confidence levels (CLs) identified by the AlignAPI. These CLs are taken observing a threshold
provided during the ontology-alignment process.
Step 2: Alignment Improvement In this step, the attribute provider tries to improve the
confidence levels of the attribute-name pairs from Step 1. Note that performing this step requires
the relying party to know some attribute values. Knowing theses attribute values is a valid
assumption, as the relying party can obtain required values, e.g. from the user or another local
attribute provider.

The attribute provider requests from the relying party blinded attribute values for all attributes in
OALIGN with confidence levels (CLs) smaller than 100%. The relying party receives an eID value
and the attribute name as input through a web service public interface and returns the corresponding
blinded attribute value. The attribute provider executes a similar process, blinding its own stored
attribute value, to assess the similarity with the obtained blinded value retrieved from the relying
party.

The similarity (sim) of the blinded attribute values is assessed using the Nilsimsa Distance (ND).
Then, sim is normalized on a 0-1 scale. If sim is greater than a given threshold (e.g. sim > 0.98),
it improves the confidence level (CL) to 100%. Otherwise, for sim values between 0.97 and 0.64
an increment factor (IF) is defined proportionally,

CL = CL+ (sim ∗ IF ) (1)

e.g. if sim is between 0.65 and 0.84, the CL value is updated to CL = CL+ (sim ∗ 0.125).
After updating the respective confidence level (CL) values for each attribute-name pair, the

attribute provider returns the improved alignment to the relying party. The relying party concludes
the alignment-improvement step.

16 http://ontop.inf.unibz.it/
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Step 3: Attribute Exchange The conducted ontology-alignment process enables relying party
and attribute provider to exchange attributes, while both entities can rely on their own terminology.
With the help of the implemented WS interface, the relying party can request attributes based on
its own ontology, i.e. ORP . The produced ontology alignment is used to map the attributes required
by the relying party, using ORP , to the nomenclature utilized by the attribute provider, i.e. OAP .
This way, the attribute provider can perform a query on its database using its terminology. The
attribute provider uses the parameters of the relying party’s request to parametrize an SPARQL
query. This query is then translated, using the ontop platform, into an SQL query and executed
on the attribute provider’s local database. Finally, the attribute provider sends back to the relying
party the resulting set of attribute names and values (Figure 4, Step 3).

6.2 Results

To evaluate our prototype, we experimented with different ontologies each containing ten attributes
and their respective attribute values. This way, we investigated the capabilities of our prototype to
deal with different input data. In total, we used 10 ontologies (O1–O10) with similar terminology,
as described in Section 5.

For our experiments, the attribute provider uses O1 to represent stored eID attributes. The
remaining nine ontologies (O2–O10) were assigned to the relying party. This way, we were able to
conduct nine test runs evaluating the proposed solution’s capability to align different ontologies.
The attribute values used in the assessment where generated by a random data generator17.

In our experiments we used two metrics to assess our prototype’s performance: precision and
confidence level (CL). The precision [19] is obtained from:

P =
TP

TP + FP

(2)

and the CL is the probability that two attribute names of the respective attribute-name pair
correspond to each other. The solution under evaluation provides the CL value used in our
assessment. The precision and CL values presented in Table 5 are the average values of the whole
set of attribute-names (Step 1) and the average values of attribute-values (Step 2) to each ontology
(O2 to O10) assessed with the respective sets in the Ontology 1 (O1).

The results obtained show that our prototype achieves confidence values of 100% for all tested
ontologies in the second alignment step. The results obtained and illustrated in Table 5 show that

Table 5. Obtained results from the experiments

Step 1 Step 2
PAp (%) CA (%) PNp (%) CN (%)

O2 100.00 47.00 100.00 100.00

O3 90.91 44.00 100.00 100.00

O4 47.62 9.00 83.33 100.00

O5 100.00 47.00 100.00 100.00

O6 83.33 33.00 100.00 100.00

O7 83.33 33.00 100.00 100.00

O8 21.28 9.00 90.91 100.00

O9 83.33 33.00 100.00 100.00

O10 19.95 9.00 83.33 100.00

17 https://mockaroo.com/
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the second alignment step increased the precision from 21.28% up to 90.91% for Ontology 8.
For Ontology 2 and Ontology 5, precision was already at 100% after the first step. The second
alignment step increased the confidence levels for all ontologies up to 100%.

7 Conclusions and Future Work

In this paper, we have proposed the use of ontology alignment and locality-sensitive hashing
functions to leverage attribute interoperability in eID federations. A survey conducted has revealed
that implementations of these two technologies already exist but are not tailored to use cases
related to eID federations. We have hence applied systematic assessments of available solutions
using a set of requirements. These assessments have revealed that AlignAPI [7] is the most
suitable ontology-alignment solution available. Furthermore, Nilsimsa [14], [15] turned out to
be the locality-sensitive hashing implementation that meets best the special requirements of eID
federations.
A prototype was implemented to verify the feasibility of our Alignment Entity proposal. Through
its implementation, we conducted experiments using ten different ontologies and ten data sources
with the same attribute values, but different terminologies. Obtained results show that it is possible
to establish alignments between distinct attribute names using the winner solutions identified by
our assessments. We also found out that the second step proposed increases the confidence level of
the alignment in the same ratio as the attribute-values are similar.
In future work, we will use the assessment results obtained to enhance the prototype
implementation of the aligning entity. This enhanced aligning entity will finally enable attribute
interoperability in eID federations such as the European STORK framework. We are also going to
implement a history feature on the assessment of the similarity between ontologies. This way, it
will be possible to increase/decrease the confidence on the obtained alignments considering also
their past performance.
The work presented in this paper is a fundamental basis for the realization of the aligning entity, as
it assures that its two most important building blocks, i.e. ontology alignment and locality-sensitive
hashing functionality, are implemented in the most effective and efficient way.
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